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Abstract

The polarization state of an electromagnetic wave can be described as a point
on the Poincaré sphere using two spherical angles, (a, ¢) or (J,7), and the degree of
polarization, p. The spherical description of polarization state is used as the basis for
interpreting dual-polarization radar measurements. Analysis of three classes of par-
ticles: aligned, spherical, and randomly oriented, is performed. The depolarization
trajectory on the Poincaré sphere due to propagation path and backscattering effects
is examined. The depolarization trajectory due to aligned particles is simplified by
the introduction of a new spherical angle 5. The results of the analysis are used to
determine the optimal transmitted polarization state and receiver basis for meteoro-
logical studies. The optimal transmitted polarization is shown to be circular. The
optimal receiver basis is shown to be horizontal and vertical (H-V'). The New Mexico
Tech dual-polarization radar was modified as a result of this study, to transmit cir-
cularly polarized waves and receive the backscattered wave in an H-V basis. Data of
a September 15, 1998 thunderstorm are presented showing the processing performed

by the radar’s host computer.
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Notation in the Text
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S0
81
S92

53

Wy

LHC/RHC polarization basis

linear polarization ratio, Wy /Wy,

the degree of polarization, 0 <p <1

difference of the power in H and V receivers, second Stokes parameter
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the real part of (-)

Right Hand Circular polarization

first Stokes parameter normalized to polarized power

second Stokes parameter normalized to polarized power

third Stokes parameter normalized to polarized power

fourth Stokes parameter normalized to polarized power

angle in the Stokes sub-space defined by %tan_l(ImWLR/ ReWiR)
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of the polarization ellipse

difference of the power in + and - receivers, third Stokes parameter
angle in the Stokes sub-space defined by tan—!(ImWyyv/ReWyy)

or the phase difference between Ey and Ey

differential propagation phase shift

difference of the power in L and R receivers, fourth Stokes parameter
or vertically polarized wave

445° linear polarization basis
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geometric mean of the power in receiver channels 1 and 2

power in the H polarization channel defined by W

complex correlation between the signals in the two receiver channels in
an H-V receiver basis defined by EyE},
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W, power in the LHC polarization channel defined by [E,|?
Wrr complex correlation between the signals in the two receiver channels in
an L-R receiver basis defined by EE}
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(-) values estimated from the measurements
ensemble average
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(-) volume averaged quantity or time average
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Chapter 1

Introduction

Radar serves two roles in meteorology. The first is an operational role. In an oper-
ational mode a weather radar is capable of detecting severe weather and estimating
flash flood potential based on rainfall estimates for watches, warnings and emergency
services planning. The other role is for the purposes of research. In this role, the
microphysics and dynamics of the storm become the focus of study. Size, shape,
amount, and thermodynamic phase of the hydrometeors become the items of interest
(Doviak and Zrnié, 1993). Often, the goal of research is to improve the operational
capabilities of weather radar.

Early radar meteorologists believed raindrops were tumbling or randomly oriented.
The vertical wind tunnel studies of Pruppacher and Beard (1970) showed falling water
drops were oblate spheroids with a vertical rotational axis of symmetry. Pruppacher
and Beard were able to develop an empirical relationship between drop sizes and
drop shapes from the wind tunnel data. Measurements made by numerous radar
meteorologists in the early 1970’s provided strong evidence raindrops were indeed
oblate spheroids, confirming the results of the vertical wind tunnel studies (Atlas,
1990).

The fact that raindrops falling at their terminal velocities tend to be horizontally
distorted leads naturally to the use of polarization techniques in radar meteorology.
This horizontal alignment affects the propagating wave in several ways. The hor-
izontal reflectivity (Zp) is greater than the vertical reflectivity (Zy) and the ratio
of the reflectivity is termed the differential reflectivity (Zn/Zy = ZDR). ZDR is a
measure of the size and the shape of the raindrops. Propagation through rain attenu-
ates the horizontally (H) polarized component more than the vertically (V) polarized

components of the wave. This effect is termed differential attenuation. Propagation
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Frequency Total Differential Differentia

Band Range Wavelength | Attenuation Attenuation Phase Shift
Designation (GHz) (cm) (dB / km) (dB / km) (degrees/ km)
S-Band 2.60-3.95 11.5-7.6 0.003-0.015| <0.01@25GHz | 3 @25GHz

C-Band 3.95-5.85 76-51 0.015-1 0.15@5GHz 8 @5 GHz
X-Band 820-1240 | 37-24 3-85 1.0 @10 GHz 15 @ 10 GHz

Table 1.1: Frequency and Wavelength of Commonly Used Bands. Typical values of
total attenuation, differential attenuation, and differential phase shift corresponding
to rainfall rates of 150 mm/hr are from Oguchi (1983).

through rain introduces a phase shift between the H and V polarized components and
is termed differential propagation phase shift (¢g,). The differential attenuation and
differential phase shift effects are cumulative in range and become progressively larger
with decreasing wavelengths. Table 1.1 shows commonly used radar band designa-
tions, frequencies, and wavelengths. Typical values of total attenuation, differential
attenuation and differential phase shift for rainfall rates of 150 mm/hr are also given.

Particles large enough to be in the Rayleigh-Gans or Mie scattering regime will
produce a differential phase shift (6,) between H and V components upon backscat-
ter. Non-Rayleigh scattering can produce large changes in ZDR for relatively small
changes in particle size (Oguchi, 1983, Figure 19). Only hail with a diameter of
5 cm or greater will produce a differential phase shift upon backscatter at S-Band
wavelengths (10 cm), this has been used to infer the presence of hail using S-Band
wavelengths (Balakrishnan and Zrnié, 1990). At X-Band wavelengths (3 cm), normal
size raindrops are in the non-Rayleigh scattering regime. ¢4, and J, both contribute
to the phase between the H and V components and at X-Band they are comparable
effects. Since differential phase shift increases monotonically with range, any sudden
increases or decreases in the phase with range can be attributed to differential phase
shift upon backscatter. In practice, the phase measurements tend to be rather noisy,
especially at longer wavelengths, so distinguishing between ¢4, and d, is difficult
(Hubbert et al., 1993).

Historically, the meteorological radar community has been split into two groups:
those who transmit and receive linear H-V polarizations and those who transmit
and receive left (L) and right (R) circular polarizations. The H-V groups transmit
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alternating pulses of H and V polarizations. The radar return corresponding to the
transmitted polarization (co-polar) provide a measure of the H and V reflectivities
and ZDR. The ratio of the power in the orthogonal receiver (cross-polar) to the
power in the co-polar receiver is termed the linear depolarization ratio (LDR). Lin-
ear depolarization is a result of backscatter from irregularly shaped or randomly ori-
ented hydrometeors. The correlation coefficient of the power in the co-polar receivers,
puv(T), is determined from consecutive transmission of H and V polarizations, where
T is the period between transmitted pulses. The correlation coefficient at zero time
lag, prv(0), is the correlation coefficient of the signals in the two receiver channels
if H and V were simultaneous transmitted. pgy(0) is a measure of the variations in
the shape of drops and is estimated from pyy (7). puv(T) is a measure of the reshuf-
fling of scatterers occurring between the transmitted pulses (Sachidananda and Zrnié,
1985). The phase of the correlation coefficient provides a measure of the differential
propagation phase shift, ¢4,, and differential phase shift upon backscatter, d,. Phase
measurements based upon the co-polar returns of consecutive transmitted pulse are
noisy due to the non-simultaneous nature of the measurement and as a result of the
estimation of pgy (0) from the measured pgy (T) value.

When a radar transmits alternate L and R polarizations, the radar returns corre-
sponding to the transmitted polarization (co-polar) provide a measure of the L and
R reflectivities. The ratio of the power of the radar returns in the orthogonal re-
ceiver (cross-polar) to the power in the co-polar receiver provides a measure of the
circular depolarization ratio (CDR). Circular depolarization is a result of backscatter
from non-spherical particles regardless of the particle orientation and is more sensitive
to randomly oriented particles than linear polarizations (Torlaschi and Holt, 1998).
Differential propagation phase shift depolarizes circular polarizations by transferring
transmitted power into the cross-polar channel. As a result, the use of a single (co-
polar) receiver has been shown to severely underestimate the storm reflectivity when
the transmitted circular polarization is depolarized by differential propagation phase
shifts (Torlaschi and Pettigrew, 1990). The phase of the correlation of the power in
the co-polar and cross-polar channels, prr, can be used to determine particle align-
ment directions Krehbiel et al. (1996) Chen (1994). McCormick and Hendry (1975)
pioneered much of the early work associated with the use of dual-circular polarization
radars.

The focus of this study is summarized in the following questions:

1. What are the best polarizations to transmit?
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2. What are the best polarizations to receive?

3. Is there any advantage to transmitting and receiving in different polarization

bases?
More specific questions are:

1. When is a single transmitted polarization state adequate for determining all the
parameters that radars can measure: ZDR, the differential reflectivity; d,, the
differential phase shift upon backscatter; (Ag/Ay)?, the differential attenuation
of the propagation path; and, Kpp, the specific differential phase shift of the
propagation path?

2. Are there any conditions that necessitate the alternate transmission of orthog-
onal polarizations?

3. What other transmitted polarization state, if any, will provide additional me-

teorological information?

The linear (H-V) and circular (L-R) polarization methods utilize the transmis-
sion and reception of the same orthogonal polarization bases. In the case of (H-V)
polarization basis, it is clear that there must be a significant amount of depolariza-
tion (LDR) due to backscatter from randomly oriented or non-horizontally aligned
particles before the signal power in the cross-polar channel exceeds the noise power
of the cross-polar receiver. There will be a measurable CDR before there is a mea-
surable LDR for the same receiver noise, since randomly oriented and horizontally
aligned precipitation particles will incoherently and coherently depolarize a circularly
polarized wave. Torlaschi and Holt (1998) provide a interesting theoretical basis of
this higher sensitivity. If the transmission and reception bases are allowed to differ
(e.g., transmit LHC and receive H-V'), the depolarization will be measurable before
co-polar/cross-polar methods indicate a measurable depolarization. Sachidananda
and Zrnié (1985) previously considered the transmission of alternate +45/-45 slant
linear polarizations and reception of H-V polarized returns in order to reduce the
data acquisition time. They did not recognize the improved sensitivity of this tech-
nique. Nor, as will be shown later, did they consider that circular polarization might
have advantages for the transmitted polarization.

The geometrical interpretation of polarization state (the Poincaré sphere) is used

as a guide in this study to answer the questions posed in this introduction. Chapter
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2 of this dissertation summarizes different ways of representing polarization states
and shows how the polarization state is determined from the measured covariances.
The analysis is expanded beyond the usual treatment to include the effects of un-
polarized components in the scattered wave. Chapter 3 presents an analysis of how
meteorological propagation and backscattering effects change the polarization state of
the transmitted polarization including determination of the unpolarized component.
This analysis is done for the case of aligned, randomly oriented, and spherical parti-
cles. Chapter 4 examines the question of best polarizations to transmit and receive
to provide the most meteorological information. Chapter 5 describes how the New
Mexico Tech radar was modified to implement the new measurement and processing
techniques of this study. The final chapter summarizes and discusses the results and
discusses the questions posed in this introduction.

Appendix A contains a background discussion of polarization and the various ways
to describe polarization: electric field vectors, the polarization ellipse, a planar de-
scription of polarization or polarization ratios, Stokes parameters, and a geometrical
description of polarization based upon the Poincaré sphere. Appendix B shows how
measurements usually made in a specific receiver basis can be determined from co-
variance measurements made in a different receiver basis. Appendix C shows how the

Poincaré sphere can be used as a guide for radar calibrations.



Chapter 2

Radar Polarization Measurements

2.1 Introduction

In this chapter we show how the radar measurements determine the elements of
the coherency matrix, or the covariances. From the radar measurements we can
determine the degree of polarization which is defined as the ratio of the polarized
power to the total power. The coherency matrix can be decomposed into polarized
and unpolarized component matrices. Furthermore, the elements of the coherency
matrix can be related to the Stokes parameters. The Stokes parameters can be used

to determine spherical angles (a, ¢) and (d, 7) of the Poincaré sphere.

2.2 The Coherency Matrix, J

If a dual-polarization radar receives two orthogonal polarization states, the corre-
lation between the signals in the two receivers can be determined. The coherence
matrix (Born and Wolf, 1975), coherence density matrix (Baylis et al., 1993) or the
coherency matrix is determined from the direct product of the electric field vector

and its Hermitian transpose.

Ey
Es,

J = [Ef E;]: (2.1)

EfE, ESE;

E.E; E\E; ]

where the overbars represent the ensemble average. The ensemble averaged values of

the matrix in (2.1) are commonly defined to be:

Wi = EEf=(E])
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W EyE; = (|By[) (2.2)
W - ElE; - <E1E;> ;

where the angle brackets represent the time average. Since radar signals are stationary
and ergodic, the statistical properties of the ensemble can be deduced from time

sample averages (Doviak and Zrnié, 1993). Equation (2.1) can be rewritten in the

J:[W1 W], (2.3)
W W,

form,

where from Equation 2.3 we can see Wj is the power in receiver 1, W, is the power
in receiver 2 and W is the complex cross correlation of the signals in the two receiver

channels.

2.3 Partial Polarization

The polarization state of a fully polarized wave is characterized by two orthogonal
electric field components and the phase relation between the components. In general,
an electromagnetic wave is not fully polarized. When the wave is partially polarized
the degree of polarization, the ratio of the polarized power to the total power, is
required to complete the polarization state description.

Many polarization analyses require that the electromagnetic wave be decomposed
into unpolarized and completely polarized components. In this section we will exam-
ine the importance of the degree of polarization. Methods to determine the degree of
polarization from the measurements will be described. And a geometrical interpre-

tation of the degree of polarization is suggested.

2.3.1 The Degree of Polarization

The coherency matrix in a general receiver basis is defined by

J:[WI W]. (2.4)
W* W,

Two important quantities of the coherency matrix are the trace,

Te[J] = Wy + Wy | (2.5)
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which is a measure of the total power and the determinant,
Det[J] = W1W2 - |I/V‘2 s (26)

which is related to the degree of polarization. If the wave is completely polarized,

Det[J] = 0. For a completely polarized wave,

El = E16j¢1
EQ = E26j¢2 .
The covariances can be found from
Wy, = E\Ef=|E|?
W2 = EQE; == ‘E2|2
W = EAllE; = ElE;€]¢ .
And from 2.6,
Det[J] = W1W2 — |I/V|2
= |E\]’|E,)> — E\E};E;E,
= |E\P|Ex|? — |Ev|?| Bl
Det[J] = 0. (2.7)

If the wave is partially polarized, the coherency matrix can be decomposed into

unpolarized and polarized matrices,
J=J,+7J,, (2.8)

where J,, and J, are unpolarized and polarized coherency matrices. This decompo-
sition is termed a proper decomposition when Det[J p] = 0. In the notation of Born
and Wolf (1975) and Mott (1986), the decomposed coherency matrix can be written,

| wow ]
“we w | =

A0
0 A

B D

e c (2.9)

From (2.9) we have the relationships, Wy = A+ B, Wo = A+ C, and W = D, where

B and C are the polarized powers and A is the unpolarized power in the two receiver
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channels. The polarized component must satisfy the relation Det[J ] = 0.

B D
Det[J | = D C
I L S
S W WhR-A
= M- AWy — A) - [W]

Equation (2.10) is quadratic in A. Using the solution for a quadratic equation,

24 = (Wi + Wo) £ /(Wi + Wa)2 — 4(W, Wa — [W2)
24 = (Wi+Wo)£\/(Wi — Wo)2 +4|W |2, (2.11)

where we have made use of the identity (W) + W) — AW W, = (W, — W;)? in the
second equation.
We can now solve for B,

A+B = W
2A+2B = 2W,
2B = 2W, —24
2B = 2W, — (Wi + Wa) F1/(Wy — Wa)? + 4|W 2
2B = (W, —Wa)F /(W — Wa)? +4[W2. (2.12)

Since B is the real, polarized power in receiver one, it must be a positive quantity.
In (2.12) we see that the plus sign must be used for B to be positive. And therefore,
the negative sign must be used in (2.11).

Solving for C|

A+C = W,
2A+20 = 2W,
20 = 2W,— 24
2C = 2Wy — (Wi + Wa) F /(W1 — Wa)? + 4| W2
2C = (Wy—W1)+ /(W) — Wy)2 +4|W |2, (2.13)

where we have chosen the plus sign to make C positive.
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The elements of the decomposed coherency matrix can be summarized in the

equations,

24 = (Wi + W) — /(Wi — Wa)2 + 4|W]?)
2B = (W) —Wa)+ /(W — Wa)? + 4]W]2)
2C = (Wy—W1)+ /(W1 — Wa)2 + 4|W]2)
D =W (2.14)

In terms of the elements of the decomposed coherency matrix, the degree of po-
larization, the ratio of polarized to total power, can be written as
B+C _ B+C
(B+A)+(C+A) W +W,
V(W1 = Wo)? 4+ 4| W]2)

p:

Wi 4+ Wy
M+ W) — AW, — 4] P2)
B Wi + Wy
_ AW W, — [W]?)
=\ e (2.15)
_ _ 4Det[J]
SN (T2

where Det[J] and Tr[J] are the determinant and trace of the coherency matrix, J, p
is the degree of polarization, B and C are the polarized power in the two receivers,
and A is the unpolarized power in each receiver.

In this section we showed how the coherency matrix can be decomposed into
matrices that represent the unpolarized and polarized power of the electromagnetic

wave,
A 0
0 A

J= (2.16)

B W
w* C |’
where A, B, C', and D are determined from Equation 2.14. If we write the radical

terms in (2.14) as,

VW= W) 4 4W 2 = /(W + Wa)? — AW W, — [W]2)

_ AW, = (W)
= (W1 + WQ)\I 1 (W1 n W2)2

= p(W1 + WQ) (2.17)
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then we can write (2.14) in terms of p as,

24 = (Wi+W2)(1-p)

2B = Wi(l+p)—Wz(1-p)

2C = Wo(1+p) —Wi(1—p)

D = W. (2.18)

2.4 The Stokes Parameters and Poincaré Sphere

In the middle of the nineteenth century, Stokes (1852) showed that the polarization
state of light could be determined by measurements using a combination of polarizers
and phase retarding plates. The first measurement involves measuring the total power
incident on a detector from a particular source. This measurement determines the
total intensity and the first Stokes parameter (I). A linear polarizer is then placed
between the source and detector. The difference of the detected power when the
polarizer is rotated to pass horizontally and vertically polarized light is the second
Stokes parameter (@). The third Stokes parameter (U) is similar to (Q) except
that the power differences are taken with the linear polarizer set to +45° and -45° off
horizontal (or vertical). The linear polarizer and a phase retarder (quarterwave plate)
are then used to resolve the power into left and right hand circular components of
the light. The difference between the power in LHC and RHC polarized components
determines the fourth and final Stokes parameter (V).

The relation between the Stokes parameters is given by
P>Q*+U*+V?, (2.19)

where the equality holds only for completely polarized light. When there is partial
polarization the Stokes parameter representing the total power, I, can be split into

I, =pl =\/Q?>+ U2+ V? (2.20)

I=01-plI (2.21)

polarized
and unpolarized
power, where p is the degree of polarization defined by

VEZFTTFV?
: |

(2.22)
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RECEIVER BASIS
(H/V) (+7-) (L/R)
Wy + W, W, + W W+ Wy
Q Wy - W, 2ImW, 2ReW
U 2ReW,y W, - W 2ImW g
% 21mWyy 2ReW, Woo- We

Table 2.1: The Stokes parameters in terms of the coherency matrix elements are

dependent upon the polarization basis of the receivers.

Poincaré (1892) recognized the Stokes parameters could be interpreted geometri-
cally. The triplet (@, U, V') represents three cartesian coordinates. For the case of a
completely polarized wave the Stokes parameter I represents the radius of a sphere,
centered at the origin, that passes through the point (@, U, V). In the case of a par-
tially polarized wave, the radius of the sphere that passes through the point (Q, U, V)
is pI. This sphere is commonly referred to as the Poincaré sphere.

To see how the covariances relate to the Stokes parameters and the Poincaré

sphere, note from (2.16) the total polarized power is given by

L=B+C= /(W - W2 +4W|2. (2.23)
If we write the cross correlation, W, in terms of its cartesian components
W = |W|cos¢+j|W|sing , (2.24)

we recognize the total polarized power can be written in terms of three orthogonal

components,

I = /(Wi — Wa)2 + (2] W] cos §)? + (2| W |sin ¢)2 . (2.25)

This is shown graphically in Figure 2.1. The quantity (W, — W5) is the difference of
the powers in the two receiver channels and corresponds to the Stokes parameter for
that particular receiver basis.

A dual-polarization radar is normally configured to receive a specific pair of or-
thogonal polarizations, for example H and V polarizations. It is the choice of receiver
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Figure 2.1: Three-dimensional representation of the covariance measurements. The
vertical axis corresponds to the Stokes parameter for the basis in which the polariza-

tion measurements are made.

polarization basis that determines the relationship between the elements of the co-
herency matrix and Stokes parameters. Table 2.1 shows the relationship between
the Stokes parameters, which are receiver basis independent, and the elements of the

coherency matrix. In an H-V polarization basis,

(EnEy) (EEy)
(ExEv) (EvEY)

Wg  Whay

(2.26)

2.4.1 The Spherical Angles of the Poincaré Sphere

Figure 2.2 illustrates the Poincaré sphere and the description of polarization state
defined in terms of two sets of angles: (26,27) in Figure 2.2a and (2a, ¢) in Figure
2.2b, where 2§ and 2« are polar angles and 27 and ¢ are azimuthal angles. The (20, 27)
description of polarization state is simply related to the covariances measured in an
L-R receiver basis. From Figure 2.2a we can determine the angles (24,27) in terms

of the Stokes parameters and from Table 2.1 we can find the Stokes parameters in
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Figure 2.2:

description.

U b)

Definition of the angles of the Poincaré sphere a) (J,7) and b) (a, ¢)

Different polarizations states are depicted in the two figures.
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terms of the covariances measured in an L-R receiver basis. The result is,

v

/QZ + U2

W, — Wg
tan20 = ——— 2.27
2|WLR‘ ( )

tan28 =

and,

U
tan2r = —

Q
2ImWLR

= ——. 2.28

QRGWLR ( )

The (2¢, ¢) description of polarization state is simply related to the covariances

measured in an H-V receiver basis. From Figure 2.2b we can determine the angles

(2, ¢) in terms of the Stokes parameters and from Table 2.1 we can find the Stokes

parameters in terms of the covariances measured in an H-V receiver basis. The result
is,

VT2

tan2a =
= 7V (2.29)
and,

tang = —
QIH]WHV

= — . 2.30
QRGWHV ( )

The angles (o, ¢) and (d, 7) are the physical angles of the polarization ellipse as shown
in Appendix A.

Figure 2.2b and Table 2.1 can be used to determine (4, 7) and (e, ¢) in terms of the
covariances for different polarization receiver bases. For example, we can determine

the o angle in terms of the covariances of an L-R receiver basis,

VUZ+ V2
Q
\/(2ImWLR)2 + (WL - WR)2

= . 2.31
QRGWLR ( )

tan2a =
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The elements of the coherency matrix, the covariances, are related to the Stokes
parameters. The relationship depends on the receiver basis used to make the mea-
surement as shown in Table 2.1. The spherical angles (6,7) and (¢, ¢) are related
to the Stokes parameters as shown in Figure 2.2. Once we choose a receiver basis,
the spherical angles can be determined directly from the measurements without using
the Stokes parameters. In practice, we will find it is computationally convenient to
determine the Stokes parameters.

The transformation of measurements from one polarization basis to any other
polarization basis is an important problem in radar meteorology. The methods of
this section are well suited to that purpose. Common radar parameters measured
in an L-R basis can be determined from H-V basis measurements and vice versa.
Application of this technique to commonly used radar parameters can be found in

the appendix.

2.4.2 Eigenvalues of J and the Degree of Polarization

The elements on the main diagonal of the coherency matrix are real and positive
receiver powers. The off-diagonal elements are complex conjugates of each other.
The coherency matrix is Hermitian. The degree of polarization may be described
in terms of the eigenvalues of the coherency matrix. The eigenvalues of a Hermitian

matrix are nonnegative, 0 < Ay < A;. The characteristic equation for matrix J is,
Det[J — AI] =0, (2.32)

where I is the identity matrix. Solving for the eigenvalues,

Wi+ W &/ (Wy + Wa)? — (W, W, — [W]?)
A1 = 5 : (2.33)

Summing the two eigenvalues we find A\; + Ay = W; + W5 = I. The sum of the two
eigenvalues is equal to the total power or the trace of the coherency matrix. The

difference of the eigenvalues is,

M=de = (W1 +Wa)2 — AW W, — [W]2)

_ AWiW, — [W?)
- (Wl”wl‘ 7+ 757

= (Wi+Ws)p, (2.34)
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where we recognize the last form is the same as (2.17). The ratio of the difference
and the sum of the eigenvalues is,

M=

—p 9.35
N+, P (2.35)

or, the degree of polarization.
In this section we showed how the degree of polarization is determined from the

eigenvalues of the coherency matrix. The results can be summarized as,

/\1+/\2 = W1+W2

)\1 - )\2 = p(W1 + WQ) (236)
M-
M+ D

2.4.3 The Correlation Coefficient and the Degree of Polar-
ization
In some radar systems, the correlation between the two receiver channel signals is

expressed in terms of the correlation coefficient |p| = |W|//W1W,. Equation (2.16)

can then be written in terms of |p|:

, Jl AW, — (W)

(W1 + Ws)?
gL w0 W
(W1+W2)2 WiW,
Wom 2
1= = () =l (2.37)

where Wy, and W,,,, are the geometric and arithmetic mean of the signals in the two

channels, respectively.

ng = v W1W2

1%
W = % (2.38)

Equation (2.37) provides a simple relationship between the degree of polarization and
the correlation coefficient. The same result can be found in Born and Wolf (1975).
The degree of polarization and the correlation coefficient are equal when W; = Ws.
(When Wy = Wy, Wy, = Wi, Wep = Wi, Wy /Wem =1, and p = |p|.)
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To investigate the behavior of the ratio of the geometric to arithmetic mean, let
Wy = xW,, where z is some positive factor. Wy, = \/t W, Wy, = @Wg, and

Won _ 2/a
Wom  l1+z
Wom 2 4x
= — 2.
(Wam) (1+2z)? (2.39)

To find the extrema of Wy, /W, we take the derivative of (2.39) and set it equal
to zero,

9 (ng>2 _ At (2.40)
0r \Wey, (1+2z)3

Since x is a positive factor the denominator is never zero. The ratio is maximized
when z = 1, or W7 = Wy. W; = W5 when the power in the two receiver channels is
equal. When Wy = 0 or Wy = 0, then W,,,/W,, = 0. The ratio of the geometric
to arithmetic mean of the power in the two receiver channels is constrained to, 0 <
% < 1. Since 0 < VVI[;TQL: < 1 it follows that

Wom\?
1-p* = (=) (=1oP)

1-p* < 1—|pf
P > |pf. (2.41)

And, since 0 < [p|<land 0 <p <1,
0<|p|<p<1. (2.42)

Both |p| and p can be zero or unity and |p| = p only when %’1: = 1. The inequality
(2.42) can also be found in Born and Wolf (1975).

Note that if the receiver basis is H-V , then the correlation p is pyy (0) of Sachi-
dananda and Zrnié (1985). The zero refers to the correlation coefficient measured at
zero time lag between H and V measurements. The constraint of zero lag is superflu-
ous here since the measurement of p is determined simultaneously from the voltages
in the two receivers. We can see that pgy(0) is closely related to the degree of po-
larization in (2.37). This relationship has not been recognized previously in radar
meteorology literature except for a brief reference in Torlaschi and Holt (1998): “The

parameter p is similar to, but not identical with, the linear correlation pgy.”

. . . . . . W
For radars that transmit and receive in the same polarization basis, ;72* ~ (0 when
am

the means are calculated from the power in the co-polar and cross-polar channels be-
cause W,,, — 0. Since the cross-polar channel is relatively weak, Wy, /W, would
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B+C e—A—l=—a—
| | |
\ \ \

EIGENVALUES O AL-A2 Al AL+A2

MEASURABLES 0 (Wp+W5)p Wi+ W,

Figure 2.3: Geometrical interpretation of the degree of polarization in terms of the

eigenvalues of the coherency matrix and the system measurables.

be a sensitive function of signal-to-noise ratios. Vv%: ~ 1 when the means are calcu-
lated from the power in the co-polar channels for alternate orthogonal transmitted

polarizations.

Wym

7 Wam Y
geometric-to-arithmetic mean ratio is useful since it is insensitive to absolute power

The parameter is termed the geometric-to-arithmetic mean ratio. The

levels (i.e., calibration) and it depends only on the ratio of the power in the two

receiver channels. We can see this if we rewrite the geometric-to-arithmetic means

ratio as,
Wom  AWIW,
Wom (W1 +W,)2
B AW, Wy
O WE2W Wy + W2
4

= —%_}_24_% . (2.43)
The geometric-to-arithmetic means ratio depends only on the ratio of the power in
the two channels. Equation (2.37) can be used to determine the degree of polariza-
tion directly from the measurements if the correlation coefficient is one of the radar
parameters. The parameter W,,,/Wa, is shown to have a geometrical interpretation
in the next chapter.

2.4.4 Geometric Interpretation of the Degree of Polarization

The degree of polarization has a geometrical interpretation. Figure 2.3 shows the
radial component of the Poincaré sphere in terms of the eigenvalues of the coherency
matrix J and also in terms of the elements of the coherency matrix and the degree of

polarization, p. There are three different radii shown but only two are important.
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The radius of the inner sphere is p(W; + W5) = A\; — Xy. The radius of the inner
sphere represents the polarized power. The radius of the outer sphere is W; + W, =
A1 + A2. The radius of the outer sphere represents the total power (unpolarized plus
polarized). The differences in the radii of the outer and inner sphere is the total
unpolarized power, I, = 2A. The ratio of the inner sphere radius to the outer sphere
radius is the degree of polarization, p. When the outer and inner sphere have the
same radius, the wave is completely polarized. When the inner sphere radius is zero,
the wave is unpolarized.

The presence of an unpolarized component in the received wave does not change
the polarization state of the completely polarized component (Kostinski, 1992). The
polarization state is the same anywhere along the radius (except when p = 0 and the
wave is unpolarized). Only the degree of polarization changes along the radius. We
can still determine the spherical angles, (,7) and («, ¢). But, we have to be careful
because of the possible presence of unpolarized power. For example, sin 2a0 = %. If
we use the total power I = (B+C +2A) in place of the polarized power (B + C) then
we introduce an error in the o angle. The differences of the power in the two receiver
channels proves more useful since Wy, — Wy = (A+ B) — (A+C) = B—C. The

unpolarized power (A), being equal in the two receiver channels, cancels. The « angle
2|W|

Wi—Wy "

determined in this way is not corrupted by the presence of an unpolarized component.

then be be correctly determined using the relationship tan 2a = The angle
The angles (d,7) and («, @) can be determined from the measurements in an H-V or

L-R basis regardless of the degree of polarization.

2.5 Summary

In this chapter, we showed how the measurements made using dual orthogonal re-
ceivers (coherency matrix elements) are related to the Stokes parameters and the
spherical angles of the Poincaré sphere, («,¢) and (6,7). We also showed how the
measurements could be used to determine the degree of polarization of the received
wave and how the eigenvalues of the coherency matrix are related to the degree of
polarization and the total received power. Finally, the degree of polarization was
given a geometrical interpretation of a sphere inside a sphere. The radii of the two
concentric spheres are the total polarized power and total power. We will find an
application of this sphere inside a sphere interpretation in the next chapter.

In the next chapter, the effect of propagation through and backscatter from me-
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teorological targets on the polarization state and degree of polarization is considered
in detail. In preparation for this analysis we summarize one of the results of this
chapter. The spherical (o, ¢) angles of the Poincaré sphere in terms of the elements

of the coherency matrix, in an H-V basis can be written as,

2\ Wiy |
tan2a = —HVI
a sa Wy — Wy
ImWHV
t - . 9.44
an ¢ ReWgy (2.44)

The spherical (,7) angles of the Poincaré sphere in terms of the elements of the

coherency matrix, in an L-R basis can be written as,

Wy — Wg
tan2d = ———

2|Wir|

ImWLR
tan27 = . 2.45
ansT RGWLR ( )

The spherical angles («, @) are used in the next chapter to determine the depolar-
ization trajectory on the Poincaré sphere due to aligned non-spherical and spherical
particles. The spherical angles (§, 7) are used to determine the depolarization trajec-

tory on the Poincaré sphere due to randomly oriented particles.



Chapter 3

Meteorological Polarimetry

3.1 Introduction

The goal of radar meteorology is to determine something about the target (e.g., rain)
and the path to the target by examining the differences between the transmitted po-
larization state and the backscattered polarization state. A review of the published
literature would find a typical approach taken by various researchers is to analyze a
single, deterministic scatterer. The single scatterer analysis is then used to construct
(using superposition) a cloud of spatially random scatterers. Finally, the depolar-
ization effects due to the path to and from the cloud of scatterers is included. The
approach taken here is to assume depolarization along the propagation path to a
range of scatterers, depolarization upon backscatter, and depolarization along the
propagation path back to the radar antenna.

In this chapter we will consider three classes of scatterers: aligned scatterers,
spherical scatterers, and randomly oriented scatterers. The aligned scatterer case
will be further broken down into horizontally aligned and non-horizontally aligned
cases. For each class of scatterers we will calculate the covariances that are the ele-
ments of the coherency matrix. From the covariances, we will examine the trajectory
of the depolarization on the Poincaré sphere. For the case of horizontally aligned
scatterers, the coherent depolarization trajectory is best described in terms of the
spherical angles, (o, ¢) when the wave is completely polarized or (3, ¢) for the gen-

eral case when the wave is partially polarized. The new angle  is introduced to

!Incoherent depolarization results in a reduction in the degree of polarization. Coherent de-
polarization results in a change in the polarization state. Traditionally, radar meteorologists use
“depolarization” to describe both coherent and incoherent depolarization.

22



CHAPTER 3. METEOROLOGICAL POLARIMETRY 23

simplify the analysis for the case of horizontally aligned particles. For the case of
randomly oriented scatterers, the depolarization trajectory is best described in terms
of the spherical angles, (6, 7). For the case of non-horizontally aligned scatterers, the
coherent depolarization trajectory is best described in terms of the spherical angles,
(o, @) or (B',¢"), which are (o, ¢) and (5, ¢) in a rotated receiver basis.

We will adopt the convention of (Torlaschi and Holt, 1998) where the polarization
state is defined by looking away from the radar. An electric field vector of constant
magnitude rotating in a clockwise direction is left-hand circularly (LHC) polarized
regardless of whether it is propagating towards or away from the radar.

3.2 Aligned Particle Case

For the case in which propagation is through a region of aligned particles we can
assume an alignment direction for simplicity. We will assume the meteorological
particles along the propagation path and the backscatters are aligned horizontally
with respect to the radar beam. The equation for the H and V components of the
electrical field incident upon the radar antenna due to backscatter from a given volume
in range can be written,

t

Eu : (3.1)

Ey

Eyn

v

" N

=1

where the superscripts ¢t and r represent the transmitted and received electric fields, ¢

is the speed of light, C is a constant of proportionality. P; is the propagation matrix

1 | e—vari
Pi:—le 0 ] (3.2)

to the it" scatterer

0 6_7V7'i
where vg and 7y are the complex horizontal and vertical propagation constants of

the propagation path and r; is the range to the i** scatterer. S; is the backscattering

matrix of the 5 particle described by

S; = (3.3)

0 Syv |

There are N particles within the backscattering volume. The backscattering matrix
has no off diagonal elements when the particles have a rotational axis of symmetry. For
the case of horizontally aligned particles, the rotational axis of symmetry is assumed
to be vertical.
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Multiplying out the terms on the right hand side of (3.1) we find
i 1 E;ISHH16727H” 0
r2

3.4
0 E€/SVV1.6_27V” ( )

3.2.1 Covariance Calculations

Once we have determined the H and V components of the backscattered wave inci-
dent upon the radar antenna, we can calculate the elements of the coherency matrix
(namely, the power in the two receiver channels, Wy and Wy, and the complex cross
correlation, Wyy). The power in the horizontal receiver channel can be found from
its definition, W = (Ey E3)". Using the values of Ej from (3.4) we find

1
Wi = (EnEp) ZZ 2 QSHHzSHHe 2yatie V"
1= 1] 1 ’LT]
* 1 * .
= <(EHEH)t>ZZr2 QSHHiS;{Hje_Q’YHTie_Q’YHT] : (35)
i=1j=1"4"j

The double sum can be written as a sum of self (i = j) and mutual (i # j) terms

WIZ — <|E ‘>ZT4|SHH ‘26 4Reynur;

=1 "1

N N
1
+ (|EY ‘ ZZ ; QSHHzSHH e—2Reyn(ri+r;) g—j2Imyu(ri—r;) (3.6)
i=1j#i 1]
Since the positional relationship between any two particles is uncorrelated with the
position between any other two particles, the phase term in the remaining double
sum (the last exponential term on the RHS) averages to zero. The self term can be

volume-averaged to give

9 e~ 4Reyyr;
Ay(|Surl?) = (1/N) 2| Sma P—— (3.7)
2
where A% represents the two way mean attenuation of the H polarized component
of the wave and the angle brackets indicate volume-averaged quantities. Writing the

transmitted horizontal power as
Wy = (| Ey*) (3.8)
the receiver power in the H channel can be written in the form

Wi = Ay N(Sun)Wh = A% ZaWh , (3.9)
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where Zg = N(|Sux|?) is the horizontal reflectivity. By similar arguments the power
in the V receiver channel is given by

Wy, = AUN(|Syv YWy, = AL Zy Wy, (3.10)

The ratio of the power in the two receiver channels is

Wy A2 (WH)t
— —ZDR— — 3.11
() = zoRge () - (3.1)

where ZDR = %Jé"j—"jﬂ% = Z—;’ is the differential reflectivity and A% /A% is termed
the two way differential propagation attenuation or more simply as the differential
attenuation.

The complex cross covariance is defined as
Wiy = (EgEy)T . (3.12)

Substituting in the values of Ey and Ej, from (3.4) we find

N N
- il .
Wiy = (EuEP)Y. Y. — 2SHHiS{‘,‘,je_27H’"ie_27V’f
im=1j=1"1i7Tj
N N -
= (BWED) Y —pSun Siage e (319

i=1j=1"i"}j

Again, we can break this sum into two parts, self and mutual terms

N
1
Wi, = ((EgE}:) ZT S, Sy, e 2Relvatv)ri e =i2Im(yu—1v)ri (3.14)

i=1"1

+ EHE* ZZ 2 QSHH S 6—2Re HT1+’YVTJ)6 j2Im(yuri—yvrj) .
1=1 1#j T J
Due to the random position of the particles, the phase term of the double sum (the
last exponential term on the RHS) again averages to zero. We can find the volume-

averaged quantities

Z 1 — S Stv.e” 2Re(rtW)rie=i2m(n-w)t = N(SppSi ) AgAve %% | (3.15)

zll

where the angle brackets on the scattering term represents volume averaged quantities
and the one way differential propagation phase shift.
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The correlation coefficient of the transmitted polarization state is defined as

_ (ExFEy)
(B PYIBV )

By re-arranging this equation we find

(ExEy) = pavy/ (| Eal2)(| Bv[2) = prv/WaWy . (3.17)

The cross correlation can be written in the form

PHV (3.16)

Wiy = Nplyy Ag Av\|WEWL(| S Sy e 73000 (3.18)
where ¢, is the differential phase shift upon backscatter and is defined by
The correlation coefficient of the received wave can be found

pr WIT{V
H - T
VWEWY

Nplgy Ag Ay \V WEWHASauSiry ) o—i(20a,—01)
VN2(Smul?) (| Svv[?) A% A3 WEWY

- (SerSyv)  itepu-o0 (3.20)
V{ISuu){[Svv[?)

The term,
([SuuSivI)

=SSP S )

is a measure of how well the shapes of the particles in the scattering volume are

(3.21)

correlated with each other. We call this term the shape correlation coefficient and
denote it as f. For complete correlation of the shapes, f = 1. If the shapes are
uncorrelated, f = 0. The correlation coefficient of the backscattered wave is now
simply related to the correlation coefficient of the transmitted wave through the shape

correlation coefficient and ¢q, and dy,

Py = fquveij(%dfdl) . (3.22)

The correlation coefficient is reduced upon backscatter through the shape correlation
coefficient, f. By analogy, variations in the shapes of the particles in the propagation
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path will also reduce the correlation coefficient. To account for this possibility, we

re-write Equation 3.22 as

p?JV = fp2rop ) fpﬁffve_j(gd)dp_&) ’ (323)

where 0 < f2 . < 1is the two way loss in the correlation coefficient due to variations
in the shape of the particles in the propagation path.

In summary, the radar measurements are used to determine the covariances of
the backscattered signal incident upon the radar antenna. The first two covariances
are the power in the two receiver channels, Wy and Wy,. The third covariance is
the complex cross covariance of the signals in the two receiver channels, Wgy. The
results are simpler when the normalized covariances are considered. The ratio of the

power in the two receiver channels Wy /Wy has a simple form,

W A\ (Wa\*
:ZDR-(—> (—) , 3.94
Wy 1) (3.24)

where ZDR is the differential reflectivity, (Ay/Ay)? is the two way differential at-
tenuation, and W} /WY represents the ratio of the H and V power of the transmitted
polarization state. The correlation coefficient of the received H and V signals is also

in a simple form
Pirv = Fyvop fPhrve 7E00 %0, (3.25)

where 2¢g4, is the two way differential propagation phase shift, f is the shape corre-
lation coefficient of the scatterers in the scattering volume, f.,, is a measure of the
variation of the propagation path, and J, is the differential phase shift upon backscat-
ter. The normalized covariances will be used in the next section to determine motion

on the surface of the Poincaré sphere due to depolarization.

3.2.2 Trajectory on the Poincaré Sphere

In this section we will examine the motion of the polarization state on the Poincaré
sphere due to backscatter and propagation depolarization in the presence of horizon-
tally aligned particles.

Depolarization and Changes in the ¢ Angle

The angle, ¢, on the Poincaré sphere is defined as the angle from the U axis to the

polarization state projected onto the U-V plane. The change in the angle ¢ on the
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Poincaré sphere due to coherent depolarization can be found simply from the ratio
of the argument of the received pgy to the argument of the transmitted pgy. The

result is

A¢ = Arg (Z%V> = —(2¢4p — de) , (3.26)

HV
where 2¢g4, is the two way differential propagation phase shift and ¢, is the differential

phase upon backscatter. The phase of the correlation coefficient contains the phase
information about the propagation path (¢g4,) and the backscattering process (J;).

Depolarization and Changes in the o Angle

The spherical angle 2« is the angle between the polarization state on the surface of
the Poincaré sphere and the Q axis. The angle 2« is defined by the covariances,
Wy — Wy

If we normalize the cross correlation, Wy, by the geometric mean of the power in

tan 2o = (3.27)

the two receiver channels, we can determine 2a from the normalized covariances.

2|WH\/| vV WHWV
vV WHWV WH — WV

2|puv|

Wg _  [Wy
Wy Wy
Wy
2|pav| \V Wy
Wy

tan2a =

1-— Wi
2tan «
= - _ 3.28
1 —tan?« (3:28)
The spherical angle, «, of the transmitted polarization state is given by
¢
2|t 2|p%v| Wt
tan 20/ = Py = (3.29)

The o angle of the backscattered polarization state can be found in terms of the
transmitted polarization state and the differential attenuation of the propagation
path and the differential reflectivity of the backscatterers.

2 et [ AYWY
2 3’!‘0p ) f|pthV| _ 2 prop f‘pHV‘ ZDR'A%—IWIt-I (330)

tan2a” = =
ZDR-ALWY, AW, 1— AWy
- ZDR-AL, W},

2t 2 W/t
AL W ZDR-AZ WL
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For the special case of a fully polarized transmitted wave, |p%;,,| = 1, a backscattering

region where the shapes of the scatterers are all the same, f = 1, and no variations

2

in the propagation path, = 1, the change in the « angle is in the simple form of

prop
1 Ay

tana” = ———-—tana’, 3.31
VZDR Ag ( )

where we have made use of the trigonometric identity

2tana
tan 2 = ——— . 3.32
M= tanZa (3:32)
Equation 3.31 can be written in the form

tana” = Gtana' (3.33)

where G = (Ay/Ag)/VZDR. For the case of rain, the differential attenuation
Ap/Ay < 1 and the differential reflectivity, ZDR = Zy/Zy > 1. Figure 3.1 shows
the change in the 2a. angle when the backscattering exhibits positive differential re-
flectivity (ZDR > 1) and with no depolarization from propagation (Ay /Ay = 1)
and, therefore, G < 1. The plot in the figure is rotationally symmetric around the
Q axis (o = 0) since the change in 2« is independent of the phase between the H
and V components of the incident wave. The backscattered polarization state moves
towards the +Q pole of the sphere (H polarization state) for ZDR > 1.

Figure 3.2 shows the change in the 2 angle when the wave propagates through
a region exhibiting positive differential attenuation (Ay/Ag > 1) and with no de-
polarization upon backscatter (ZDR = 1) and, therefore, G > 1. The plot in the
figure is rotationally symmetric around the Q axis (a = 0) since the change in 2«
is independent of the phase between the H and V components of the incident wave.
The backscattered polarization state moves towards the -Q pole of the sphere (V
polarization state) for Ay /Ay > 1.

The combined effect of positive differential reflectivity and positive differential
attenuation is a reduced change in the o angle compared to either effect separately.
When the shapes in the backscattering region are not well correlated (f < 1), or the
transmitted wave is not completely polarized (|pk/| < 1), or there are variations in
the propagation path (f.,, < 1), the use of the trigonometric identity of (3.32) does
not result in any simplification.

We would like to find a solution to the general case of Equation 3.30 that has the

form of the special case solution of Equation 3.31. We can define a new angle, 23 as
2 VV[[;—Z 2tan 8

2
w W ] My 1 — 25"
/W_g_ /W_Z 1— g 1 —tan”

tan 23 =

(3.34)
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ZDRcase, G<1 270

Figure 3.1: Change in the spherical angle (2«) due to scattering from aligned particles
as a function of the incident value of (2a), for different values of G. The value of G
varies from 0.5 to .9 in steps of 0.1 and causes 2« to move toward 0°, which is the H

polarization point.

Diff Atten case, G > 1270

Figure 3.2: Change in the spherical angle (2a) due to propagation through aligned
particles as a function of the incident value of (2«), for different values of G. The
value of G varies from 1.1 to 1.5 in steps of 0.1 and causes 2a to move toward 180°,

which is the V polarization point.
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We can find the relation between the tan 2a and tan 23 by taking the ratio of tan 2«

to tan 23. The result is
tan 2«

tan 23
The ratio of the tangents of the two angles is the correlation coefficient. We can use
the trigonometric identity of (3.32) to find tan g,

tan § = ,/% . (3.36)
H

The tangent of [ is equal to the square root of the ratio of the power in the two

= |pav]| - (3.35)

receiver channels. The backscattered S angle can be found in terms of the incident

and the properties of the propagation path and the backscatters. The result is

A
t "= -—1t . 3.37
wi = 7R Ay P (3.57)

The change in the 8 angle is independent of the shape correlation of the backscatters,

the transmitted pgy, and the value of f,,,, of the propagation path. The change in
the 2o angle has been decomposed into changes due to differential attenuation and
differential reflectivity and changes due the partial polarization of the transmitted
wave and changes in the correlation coefficient. This is made clear by expressing the

backscattered spherical angle 2« as

tan2a” = f2_ . fpl tan 28"

prop
2,/ —TZD?‘{%-/A tan 3¢
H . (3.38)

tan2a” = f2_ - fp
prop HV A2
1-— m%%{ tan2 ,Bt
The two angles 2« and 283 are equal when ;OP - fplqyy = 1, or in other words,

the two angles are equal when the transmitted wave is completely polarized, the
shapes of the scatterers in the backscattering region are well correlated, and there
is no reduction in the correlation coefficient due to propagation. The two angles
are also equal when 2« = 23 = 7/2. Figure 3.3 shows a right triangle showing the
relationship between the 25 angle and sides of the triangle which are the sum of the
power, the difference of the power, and the geometric mean of the power in the H
and V polarizations and the 2a angle and the sides of the right triangle which are
the sum of the polarized power, the difference of the power, and the cross correlated

power in the H and V polarizations. The right triangle of Figure 3.3 can be used to
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m\

Sides
A=Wy -W =Q

B= 2| Wyy| tan2a = V\ZI‘WHx‘
C= p(Wy +Wy) H™ T
B'=2\/ wyw, g 2./ Wiyw,
C/= (Wy + W) B Wi - Wy

Figure 3.3: Right triangle definitions of the 2a and the 25 angle. The 2« angle
depends on the cross correlation through the term Wi while the 23 angle does not.

find the relationships

tan2cc | |
tan28 puv
cos 23
=D
cos 2a
sin 2« lonv|
= ) 3.39
sin 23 P ( )

Figure 3.4 shows the relationship between the angles 2a and 2 in a cross sectional
view of the Poincaré sphere. The angle 2/ is found from a constant QQ projection of
the polarization state on the fully polarized inner sphere onto the outer total power
sphere. The angle 23 does not depend on the degree of polarization. As the degree of
polarization is reduced, the inner sphere of Figure 3.3 shrinks. The 2« angle defined

by the intersection of the constant QQ line with the inner sphere gets smaller for a
constant 20.

The introduction of the new angle, tan 8 = /Wy /Wy to decouple the degree of
polarization or the correlation coefficient from the 2« angle is an original result of
this work.
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Figure 3.4: Cross sectional view of the Poincaré sphere sliced by a plane through the
Q axis. The total power (outer circle) has been normalized to unity. The polarized
power (inner circle) has a radius equal to the degree of polarization, p. The angle
2« is defined in terms of the polarized power while 23 is defined in terms of the total
power. The point on the total power circle is a constant QQ projection of the polarized

power polarization state.

2B

A

Figure 3.5: The angle 23 provides a geometrical relationship between the degree of
polarization , p, and the correlation coefficient, p.
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Depolarization and Changes in p

We will now determine how the degree of polarization, p, changes due to propagation
depolarization and depolarization upon backscatter. As shown in Equation 2.37, the

degree of polarization can be written as

s (Wan\ T

where p is the degree of polarization, Wy, = v WgWy is the geometric mean of the
power in H and V polarizations, and W, = 1(Wg + Wy) is the arithmetic mean of
the power in the H and V polarizations. We can use Figure 3.3 to find a geometrical

interpretation of the quantity Wy,,,/Wy,,. The result is

Wom  20/WaWy
Wam B WH + WV

=sin20 . (3.41)

Substituting this result into (3.40) we find

V1 —p?=sin28y/1— |puv|? - (3.42)

This equation can be used to establish a right triangle that is similar to the right trian-
gle of Figure 3.4 but involves the quantities, \/1 — p?, \/1 — |pgv|?, and /p? — |prv|?
This geometrical relationship is shown in Figure 3.5. Although the result is interest-
ing, the geometrical relationship of Figure 3.5 is not especially useful.

Since the relationship between |pgy| and p is not a simple relationship, the change

in the backscattered degree of polarization, is not simple. Nonetheless, we can write

1-— pg _ si’n 28" 11— ;I;me - f2lprv? ’ (3.43)
1—p? sin2pt 1 —|prv|?
2,

prop
indicate the transmitted and received quantities are shown as subscripts on the degree

the solution as

where we have defined |pyv| = |pyv| = flpkv| and the superscripts used to

of polarization, p. This result is expressed more simply in terms of the correlation

coefficient, pgy as in Equation 3.25.
Summary of the Depolarization Trajectory on the Poincaré Sphere due to
Horizontally Aligned Particles

To describe the coherent depolarization trajectory on the Poincaré sphere due to prop-
agation through and backscatter from horizontally aligned particles, we will break the
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Figure 3.6: Schematic representation of the depolarization due to differential attenu-
ation and differential phase shift of the propagation path and differential reflectivity
and differential phase shift upon backscatter for the case of horizontally aligned par-
ticles. The angle 3 is changed only due to differential attenuation and reflectivity and
the angle ¢ changes only due to differential propagation phase and phase shift upon
backscatter.
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problem down into four components: the transmitted polarization state, the incident
polarization state, the backscattered polarization state and the received polarization
state. These polarizations states will be represented by superscripts, ¢,¢,s,r, for
transmitted, incident, backscattered and received polarization states, respectively.
Figure 3.6 shows a schematic representation of the affect of depolarization due to the
propagation path back and forth to a region of scatterers on the angles 8 and ¢ for
the case of horizontally aligned particles.

The trajectory of the path on the Poincaré sphere for the case of horizontally
aligned particles is relatively simple. The transmitted phase between H and V com-
ponents is given by ¢'. After propagation to the range volume of interest the incident

phase between the H and V components is given by

¢ =¢' — dap , (3.44)

where ¢4, is the one way differential propagation phase shift. Immediately after

backscattering, the phase between the H and V components of the wave is given by

¢°=¢' + 0= 0"~ (¢ap — 00) , (3.45)

where d, is the differential phase shift upon backscatter. After propagation back to
the radar antenna, the phase between the H and V components is given by

"= — dap = 0" — (2dap — o) , (3.46)

where 2¢,4, is the two way differential propagation phase shift. The correlation
phase of the received wave contains information about the anisotropy of the propa-
gation path and the size of the backscattering particles (differential phase shift upon
backscatter, d, = 0 for Rayleigh scattering).

The [ angle of the transmitted polarization state is given by

Wt
tan ' =, W—Z : (3.47)
H

After propagation to the range of interest the incident 5 angle is given by

Av | Wy
Ag\ W

Av

A, tan 8 =

tan ' = (3.48)

where Ay /Ag is the one way differential propagation attenuation. Immediately after
backscatter the 8 angle is given by

1 | 1A, [we
t $ = t g — =, 3.49
mi = 77pr W = JZpR Ap \ W (349)
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where ZDR is the differential reflectivity. After propagation back to the radar an-
tenna, the 8 angle is given by

r_Av 1 AV W
tanﬁ —A—Htanﬁ = \/mA—%I WIt{’ (350)

where A%, /A% is the two differential propagation attenuation.

The backscattered pf;,, is simply related to the incident p%;,, the correlation of
the shapes within the scattering volume and the variation of the propagation path.

The equation for this was found to be

|p;IV| = fp2rop : f‘pith‘ ’ (351)

where pl;i, is the correlation coefficient of the transmitted polarization state, f is the
2

shape correlation coefficient of the scatterers in the scattering volume and f3.,, is
the two way correlation coefficient of the propagation path. We could also determine
the change in the o angle but in general it is a complicated result. The change in
the 8 angle is much more useful since the result is relatively simple. The change in
the angle 2 on the Poincaré sphere is more than the change in the  angle when
grop ) fpﬁﬁlV <1

tan2a” = f2. - f|py|tan28” . (3.52)
The degree of polarization, p, changes in a complicated way that is governed by Equa-
tion 3.43. The change in the correlation coefficient is much more simply expressed as

in Equation 3.25.

3.3 Spherical Particle Case

Spherical particles can be considered to be a special case of the aligned particle case.
The backscattering matrix for a single spherical particle is given by

S 0
) S] : (3.53)

where S is the backscattering cross section of the spherical particle.
Equations 3.9 and 3.10 can be used to determined the Wy and Wy, covariances in

the case of spherical particles. The results are

Wy = NAux(SP)
Wi, = NAy{(S]?) . (3.54)
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The ratio of the power in the two receiver channels is

(5 - () )

The differential attenuation of the path to the spherical scatterers will depolarize
the transmitted wave but there is no depolarization upon backscatter. If the path
to the scatterers is full of spherical particles, then Ay = Ay and the power in the
two receiver channels is the same as the power in the H and V components of the
transmitted wave.

The cross covariance Wy of spherical particles can be found from Equation 3.18

Wiy = Nlpigy |\ A AyWhEW{(|S[?)e %% (3.56)
where the differential phase shift upon backscatter, 6, = Arg(|S.|?) = 0. The corre-

lation coefficient of the signals in the two receiver channels can be found to be
Whay 2

f = |p7}-IV‘ = Jprop
VWEWY

There is still a differential propagation phase shift to the region of spherical backscat-

as

[Py e 70 (3.57)

ters and a possible reduction in the correlation coefficient but there is no depolar-
ization upon backscatter. When the propagation path consist of spherical particles,
then the received pgy is the same as the transmitted pgy .

The degree of polarization, p, will change only as a result of the differential
attenuation of the propagation path to the region of spherical scatterers. This change
in the degree of polarization will have the form,

Vy1-p7  1—pf (3.58)

sin 23" sin28t '
where we have assumed zrop ~ 1. The change in the degree of polarization due
to backscatter from spherical particles has a simpler form than Equation 3.43 since

f =1 for spherical scatterers.

For the case of spherical backscatters, there is no depolarization upon backscatter.
Only the anisotropy of the propagation path to the region of spherical backscatterers
will depolarize the transmitted wave.

3.4 Randomly Oriented Particle Case

For the case of randomly oriented particles, it is possible to analyze the problem
in an H-V basis but there is a simpler approach. To simplify the analysis for the
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case of randomly oriented particles we will neglect the propagation depolarization
(P; = % - T in Equation 3.1). Any anisotropy of the propagation path to the re-
gion of randomly oriented scatterers will result in terms that represent the differential
attenuation (Ag/Ay) and differential propagation phase shift (¢4,) as in the cases
of aligned and spherical particles. When we neglect depolarization of the propaga-
tion path, the polarization state incident upon the backscatterers is the same as the
transmitted polarization state and the backscattered polarization state is the same
as the received polarization state. The transmitted or incident polarization will be
respresented with a superscript 7 and the backscattered or received polarization will
be represented with a superscript s.

The random nature of the orientation of the particles can be exploited if we
analyze the problem in a circular basis. We will use the (d,7) description of the
polarization state, where 0 is related to the ratio of the minor and major semi-axes of
the polarization ellipse and 7 is the ellipse orientation angle (see Figure A.5). When
a linear polarization state (206 = 0 and 27 at any angle) is incident upon a region of
randomly oriented scatterers, the backscattered polarization state can be described as
(26%,27%). The backscattered 24° is the same for any incident orientation angle, 27¢,
and the backscattered angle 27° is the same as the incident 27 because the scatterers
are randomly oriented with no preferred orientation. When considering backscattering
from randomly oriented particles the (26,27) description of polarization state is a
better description than the (2c, ¢) description because only 26 should change upon
backscatter.

For the case of randomly oriented particles, the equation for the LHC and RHC
components of the electric field incident upon the radar antenna due to backscatter
from a given volume in range can be written

S

, (3.59)

where the superscripts 7 and s represent the incident and backscattered electric fields,
c is the speed of light and , C' is a constant of proportionality. P; is the propagation
matrix to the i** scatterer

0 e T

1 —Yori 0
P, = — [ € ] , (3.60)

where 7, is the free space complex propagation constant of the propagation path. S;
is the backscattering matrix in a circular basis for the i** scatterer described by the
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matrix
¥ A
Ss=1| " ', (3.61)
Ar Y,
where
1 .
AVINES E(Szvzvi_syyi)e]n
1
¥ = §(S$$i+5yyi)’ (3.62)

where 7; is the alignment direction of the major axis (subscript zz) of the i** particle
off of the horizontal. There are N randomly oriented and positioned scatterers in the
scattering volume.

Expanding Equation 3.59 we find

S

E, N =207

Er

S EL 4+ A EY,
AEL + Y B}

= 3.63
i=1 T% ( )

3.4.1 Covariance Calculations

Once we have determined the LHC and RHC components of the backscattered wave
incident upon the radar antenna we can calculate the elements of the coherency
matrix, the power in the two receiver channels Wy, and Wg, and the complex cross
correlation, Wyg. The power in the LHC receiver channel can be found from the

definition W] = (ELE})". Using the values of E] from (3.63) we find

e €7 20emi5T) t t t t
i=1j= il

As we have done previously for the aligned particles case, the double sum can be
broken into self and mutual terms. Since the position and orientation between pairs
of particles is random, the phase terms of the mutual terms (i # j) will average to

zero. Only the self (i = j) terms will remain. The result is

N —4Revor;
Wi = 3 S (ISiPIBL? + (S AR B, + (5 AErBf,)) + | AP| B P)
=1 1
N e—4Revor;
= > (BB 2 + 2Re(S; AERER ) + [ A2IER )

1,:1 1

N 6—4Re'yori
= Z I (|Zi|2|EtLi\2+20057,~|E;*AZ-|Re(ERiE}‘:i)t+\Ai|2\E§i\2). (3.65)

1=1 1
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We take the volume average of (3.65) and the result is
—4RevoR
R4
where the angle brackets indicate the volume averaged quantities and the volume

Wi =N {=PWL + (AP )W, (3.66)

average of the middle term on the right hand side of (3.65) averaged to zero (over the
alignment angle 7;). Using similar arguments we can find the power, W}, in the R

receiver channel

e —4Rev R

Wh = N ((AR)WE + (SW) (367)
We can find the complex cross covariance from the definition
Wie = (ELFR (3.65)
Substituting in the values for Ef and E% from (3.63) we find
(70n+’70r3
Wik = ZZ (IE[PAE; + (ELER)'|Zi* + (ELER) AiA; + [ERPETA;) -
i=1j=1 rirj

(3.69)
Since the positional relationship between particles is random, the phase term from
the propagation matrix (the first term on the RHS of (3.69)) will average to zero for
the mutual terms (¢ # j). Only the self terms (i = j) will remain. The remaining

Cross covariance terms are
N 6—4Re’70ri

Wir =2 —a—|BIPAE; + (BLEr) Al + (ELER)Sif + [ ERPEiA7 . (3.70)

i=1 %

When we take the volume average of (3.70) only one term survives

o—4RevoR 6—4Re YR

(BRI = N

In this section we were able to determine the covariances due to backscatter from

Wig=N WERl®T (I2P) . (3.71)

randomly oriented particles at a given volume in range. In the next section we will use
the covariances to determine the trajectory of the polarization state on the Poincaré

sphere due to randomly oriented particles.

3.4.2 Trajectory on the Poincaré sphere

In this section we will use the covariances that were determined in the last section to
determine the trajectory on the Poincaré sphere due to backscatter from randomly
oriented particles at a given volume in range. We will determine the trajectory on
the Poincaré sphere in terms of the spherical angles 20 and 27 and the degree of
polarization , p.
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Depolarization and Changes in 7

The simplest result for the trajectory on the Poincaré sphere is found in the angle 27.
From 2.45, the angle 27 is defined to be Arg(Wyg) and from Equation 3.71 we find

Arg(Wj ) = Arg(Wiy) - (3.72)

Or,
27" =271t . (3.73)

The angle 27 of the backscattered polarization state is the same as the 27 of the
incident polarization state. The orientation angle of the polarization ellipse does not

change due to backscatter from randomly oriented backscatterers.

Depolarization and Changes in ¢

The angle 26 on the Poincaré sphere is defined in terms of the backscattered covari-

ances,

Wi —Wg
2\Wig|
When we substitute the backscattered values of W, Wi and Wi from equations

3.66, 3.67 and 3.71 into (3.74) the result is

Wi — Wi [{(IZP) = (AP)
2Wik (1%%)
(=P = (A%)
(1Z1%) ’
where we have made the substitutions, (|E%|?) = Wy, (|E4|?) = Wk, and (ELEL)t =
Wt . Equation 3.75 can be further simplified by finding

tan 26" = (3.74)

tan 26" =

= tan2d’ (3.75)

(IZP) = (A" = (ISl?) + 2Re((SxcS5y)) + (Syy[*)
- <‘S:c:c‘2> + 2Re<SXXS;y> - <|Syy|2>
= 4Re(SXXS;y) . (3.76)

Equation 3.75 can now be written as
tan 20" = gtan 24" , (3.77)

where we have defined

4Re(SXXS;y)
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g=05to1 270

Figure 3.7: Change in the polarization parameter (25°) due to scattering by randomly
oriented particles as function of the incident value of (24%), for different values of the
scattering parameter g. The change is evaluated in degrees and always moves the
polarization state toward the equator of the Poincaré sphere (20 = 0). ¢ changes
from 0.9 to 0.5 in steps of 0.1.

The parameter 0 < |g| < 1 is termed the sphericity parameter and is a measure of
how the average particle within the scattering volume differs from spherical.

Figure 3.7 shows a plot of (3.77). The solid line shows the actual change in the
26 angle,

A(28) = 20" — 24"
= tan~'[gtan26"] — 26", (3.79)

while the dashed line shows the small signal approximation to the change,

A(25) = @4){%}. (3.80)

For g close to unity, the change in 2J is a maximum halfway between the linear and
circular polarization states (e.g., 20 = m/4). The point of maximum change is skewed
slightly toward circular if g departs significantly from unity. The backscattered 20 is
the same of as the incident value of 2§ when 26 = £45° or 2§ = 0 regardless of the
value of g. For other values of incident 29, the polarization state backscattered from



CHAPTER 3. METEOROLOGICAL POLARIMETRY 44

randomly oriented particles is always more linear (less circular) than the incident

polarization.

Depolarization and Changes in p

The change in the degree of polarization, due to backscattering from randomly ori-
ented particles can be found in terms of the covariances. From Equation 2.45 we have
the definition

2|Wir|
cos20 = —————— . 3.81
p(WL + WR) ( )
Or,
2|Wyg|
20 = ——————— 3.82
peos Wi, + Wg (3.82)

We can write (3.82) is terms of transmitted and received quantities, take the ratio
and substitute in the previously determined covariances. The result is
p'eos26' _ (|Z%) + (|A]%)

peos2r . (BP) (3:83)

The sphericity parameter, g, as defined in terms of the volume averaged backscattering

matrix elements (Equation 3.75) is

g = (IZ1) — (AP
(1)
(A7)
— (S (3.84)
Or,
(1A%)
1—g= PRk (3.85)
We can simplify the volume average backscattering term in (3.83) as
(ZP) + (AP _ L (AP
(1=1%) (1%1%)
= 1+1—-g
= (2—-9). (3.86)
Equation 3.83 can be written as
¢ ¢
p*cos 20
—=(2-9). (3.87)

prcos 20T
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The ratio of the transmitted and received quantity, p cos 26, is equal to (2 — g), where
g is the sphericity parameter of the randomly oriented particles in the scattering
volume. The quantity pcos2d is a measure of the polarized linear component of the
wave. Equation 3.87 shows the polarized linear component of the received wave is
always less than or equal to the polarized linear component of the transmitted wave
after backscatter from randomly oriented particles. For incident linear polarizations

the backscattered degree of polarization is given by

p = ( : (3.88)

Figure 3.8 shows a plot of (3.87) for various values of the sphericity parameter,
g. Since the depolarization is independent of the value of 7 the plot is rotation-
ally symmetric about the V axis of the Poincaré sphere (see Figure A.9). For any
particular value of the sphericity parameter, g, the ratio of the received degree of po-
larization to the transmitted degree of polarization is smallest when the transmitted
polarization state is described by 2§ = +7/2 which is LHC or RHC. The ratio of the
received degree of polarization to the transmitted degree of polarization is largest
when the incident polarization state is described by 26 = 0 or 20 = 7 which are linear

polarizations at an arbitrary orientation angle, 7.

Summary of the Depolarization Trajectory on the Poincaré Sphere due to
Randomly Oriented Particles

The depolarizing effects from randomly oriented particles can be summarized as fol-
lows. If the polarization state is defined in terms of the spherical angles (J,7) on the
Poincaré sphere, the 7 angle is seen to remain unchanged after backscattering. The §
angle and the degree of polarization both can change based upon the particle spheric-
ity parameter, g, and the ¢ of the transmitted polarization state. Since 0 < |g| < 1,
the received ¢ angle is always less than the transmitted ¢ angle, from Equation 3.77

5" <6, (3.89)
The degree of polarization can never increase due to backscatter from randomly
oriented particles. From Equation 3.87,

_ p! cos 26¢ ;

"2 — <pt. 3.90
P(2-g) osogr =P (3.90)
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Figure 3.8: Fractional change in the degree of polarization p caused by randomly
oriented non-spherical particles. The results are shown in a vertical plane through
the polar axis of the Poincaré sphere, with the different curves representing different
values of the sphericity parameter g. ¢ varies from 1.0 to 0.0 in 0.1 steps from the

outer to the inner curves, respectively.

The inequality comes from 6" < §%, and cos 26"/ cos 26" < 1. The result is,

pt

pr< :
2—yg

(3.91)

The backscattered degree of polarization from randomly oriented particles is always
less than or equal to the transmitted degree of polarization.

The change in the @ and ¢ angles can be found from Equation (A.58). In general
both « and ¢ change when ¢ alone changes. The (§,7) description of polarization
state is the better description basis since 7 is invariant and only § and p change due

to backscatter from randomly oriented particles.

3.5 Non-Horizontally Aligned Particles

Previously we considered the case of horizontally aligned particles. It may be pos-
sible for precipitation particles to be aligned other than horizontally. If we assume
horizontal alignment, then the interpretation of the depolarization trajectory on the
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Poincaré sphere will be erroneous. The further the alignment is from horizontal the
more erroneous the interpretation. In this chapter we describe a technique for de-
termining alignment direction of precipitation particles involving the transmission of
alternate orthogonal polarizations. In a later chapter, we will present a technique
for determining the alignment direction of ice crystals in the upper parts of storms
involving only a single transmitted polarization. Alignment direction measurements
using a single transmitted polarization are possible only when there is a dominant
coherent depolarization effect. In the case of ice crystals, the dominant depolarization
effect is differential propagation phase. For the case of liquid precipitation, there is
no dominant depolarization effect and the technique of this chapter must be used.
Assume the radar is capable of transmitting alternate orthogonal polarizations
(i.e., LHC and RHC). This situation is illustrated in Figure 3.9a. When the particles
are horizontally aligned, incident H and V polarizations will not be depolarized upon
backscatter. H and V are therefore the characteristic polarizations for horizontally
aligned particles. When the particles are oriented at an angle 7 off of the horizontal
the characteristic polarizations are (26 = 0,27) and (26 = 0,27 +7/2). The ZDR of
the particles transforms the incident LHC (QQ = U = 0,V = 1) and RHC polarization
(Q =U =0,V = —1) towards the characteristic polarization state on the Poincaré
sphere. When the particles are large enough to have a differential phase shift upon
backscatter, the polarization states rotate around the characteristic polarization state.
For transmitted LHC and RHC pulses, the radar measurements can be used to
determine the Stokes parameters, (Qr, Uy, Vr) and (Qg, Ug, Vi) where the subscripts
refer to the transmitted polarization, LHC or RHC. We wish to determine the align-
ment direction of the particles from the known (Qp, Uy, Vy) and (Qg, Ug, Vr) values.

In Figure 3.9b, we can see that there is a rotated receiver basis where,

Qr' = Qr' (3.92)
U, = -Ug', (3.93)

where the primes indicate the Stokes parameters in the rotated basis. The receiver
basis is rotated through angle 27 around the V axis. The rotation can be described

mathematically as,

Q' = Qcos2r —Usin27
U' = Ucos2r + @Qsin27 . (3.94)
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b) U

Figure 3.9: Backscatter from non-Rayleigh particles aligned at angle 7 from the
horizontal when LHC and RHC are transmitted on a) the Poincaré sphere and b) in
the QQ — U plane.
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Combining (3.92), (3.93), and (3.94) we can find the alignment angle 27,

QL_QR
Uy — Ug
UL +Us

QL+ Qr

We can use either form of (3.95) to determine 27. We can also use the two forms of
(3.95) to find the relationship,

tan 27

(3.95)

QL —Qr _ _UL+UR

Ur—Ur QL+ Qr

QT —Qr = Ui -Ug

QI +U; = Q%+Uz. (3.96)

This is the equation of a circle. The two points (Qr,UL) and (Qg, Ug) lie on a circle
in the Q/U plane as shown in Figure 3.9b.

In summary, o type changes always occur in a plane containing the two charac-
teristic polarizations. By rotating the receiver basis, we are matching the receiver
basis to the characteristic polarizations. ¢ changes, on the other hand, are rotations
around the line connecting the two characteristic polarizations.

It is the assumption that rain is aligned horizontally that allows us to obtain all
the polarization information while only transmitting a single polarization state. The
fact that all the polarization information is available from a single transmitted po-
larization state if the particles are aligned along H and V has been previously noted
in Torlaschi and Holt (1998). As has the fact that if one transmits a characteristic
polarization, the orthogonal polarization must also be transmitted to determine the
polarization response. Transmission of characteristic polarizations should be avoided
since the orthogonal polarization must also be transmitted. The only additional infor-
mation available from alternately transmitted orthogonal polarizations is the align-
ment direction of the backscatterers. When the backscatters are aligned horizontally
there is no additional information contained in the radar returns from the transmitted

orthogonal polarization.

3.6 Qualitative Description

In this section we provide a qualitative description of depolarization due to horizon-
tally aligned and randomly oriented particles.
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Figure 3.10: The effect of differential reflectivity (ZDR), differential attenuation
(DA% = A3, /A?%), differential propagation phase (¢g4,), and differential phase shift

upon backscatter (d;) on the polarization state.

3.6.1 Horizontally Aligned Particles

Backscatter from horizontally aligned rain drops will result in an increase of the
power in the H receiver channel relative to the V receiver channel. This is shown
schematically in Figure 3.10 for differential reflectivity, ZDR = Zy/Zy > 1. The
polarization state moves towards the H polarization point along a great circle defined
by the incident polarization state and the H and V polarization points on the Poincaré
sphere. The great circle is oriented at an angle ¢ from the U axis. The phase between
the H and V polarized components (¢ = ¢g — ¢y ) is assumed to be unaffected
by horizontally aligned particles within the resolution volume. For non-Rayleigh
scattering, there is a differential phase shift upon backscatter resulting in a rotation
of the great circle through the angle §, around the Q-axis (counterclockwise).
Roundtrip propagation through a region of horizontally aligned drops will result

in an increase in the V receiver channel power relative to the H receiver channel due
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Figure 3.11: Schematic representation of the combined depolarization due propaga-

tion away from the radar, backscatter, and propagation back to the radar.

to differential attenuation (Ay/Ay)? < 1, where Ay and Ay are attenuation factors
as defined in Equation 3.7. The polarization state moves towards the V polarization
point along a great circle defined by the transmitted polarization state and the H and
V polarization points on the Poincaré sphere. The great circle is oriented at an angle
¢ from the U axis. Forward scattering from the aligned particles retards the phase
of the H component relative to the V component resulting in a rotation of the great
circle through the angle —2¢,4, around the Q-axis (clockwise).

Figure 3.11 shows the combination of the propagation and backscattering effects.
In this figure, the Poincaré sphere is oriented so the LHC pole is the nearest point to
the viewer. The H polarization point is towards the bottom of the page and the 445
polarization point is to the right. The transmitted polarization state is close to LHC.
The differential attenuation and differential phase of the propagation path to the
range of interest moves the polarization state towards the V and 445 polarization

points, respectively. Upon backscatter, the polarization state moves towards the
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Figure 3.12: Depolarization due to backscatter from randomly oriented particles.

H polarization point. Additionally, for differential phase shift upon backscatter, the
polarization state moves towards the +45 polarization point (d, is typically negative).
The backscattered wave is depolarized further by the differential attenuation and
differential phase shift of the path as it propagates back to the radar. Only the net
depolarization is visible at any particular range. Changes in the polarization state
from one range to the next are a result of the incremental differential attenuation
and differential phase of the intervening path and the changes in the differential
reflectivity and differential phase upon backscatter from one range gate to the next.
The total change in the polarization state from the near side to the far side of a storm
through the rain region can be used to determine the average rainfall rate from the

total differential attenuation or the total differential phase shift.

3.6.2 Randomly Oriented Particles

The depolarization due to backscatter from randomly oriented particles is a function
of the incident polarization state and the average sphericity of the particles, g, as
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shown schematically in Figure 3.12. The sphericity parameter, g = 1 for spherical
particles and g = 0 for highly elongated particles (g is defined in Equation 3.78). For
incident circular or linear polarizations, the depolarization is described by a reduction
in the degree of polarization (see Figure 3.8 and Equation 3.77 for 26' = 0, +7/2).
The reduction in the degree of polarization for incident circular polarizations is a
factor of g greater than the reduction in the degree of polarization for incident linear
polarizations (from Equations 3.77 and 3.87). For incident elliptical polarizations, the
polarization state moves along a great circle containing the incident polarization state
and the L and R polarization points on the Poincaré sphere since the depolarization
involves only a change in the polar angle 2§ (Equation 3.77) and not a change in
the angle 27 (Equation 3.73). The great circle is oriented at an angle 27 from the
QQ-axis. The spherical angle 26 is reduced and the degree of polarization is reduced by
an amount greater than incident linear polarizations and less than incident circular
polarization (see Figure 3.8). With incident elliptical polarizations, the backscattered
polarization state will contain a larger linear component (from Equation 3.77, smaller
2§ is more linear) and larger unpolarized component than the incident polarization
state (from Equation 3.91). The reduction in the spherical angle 26 is greatest when
the incident polarization is about halfway between linear and circular polarizations
(see Figure 3.7).



Chapter 4

Optimal Polarization States

4.1 Introduction

In this chapter we examine the questions: what is the best polarization to transmit?
And what is the best receiver basis? We will answer the second question first in this
section. The remainder of this chapter is devoted to answering the first question.

The analysis of the previous chapter assumed an H-V receiver basis for horizon-
tally aligned particles. The characteristic polarizations of a region of horizontally
aligned raindrops are H and V. Characteristic polarizations are defined by the inci-
dent polarizations that produce minimum depolarization upon backscatter. An H-V
receiver basis matches the characteristic polarizations of rain. The phase of the cross
correlation, ¢y, in an H-V receiver basis provides a direct measure of the combined
effects of differential propagation phase shift (¢4,) and differential phase shift upon
backscatter (d;). From (3.26), A¢ = —(2¢ap + d¢). The angle 23 provides a measure
of the combined effects of differential reflectivity, ZDR, and differential attenuation
in an H-V receiver basis in (3.37).

When H and V polarizations are separately transmitted on alternate pulses and
simultaneously received, the co-polar signal (e.g., transmit H, receive H) is relatively
strong while the cross-polar signal (e.g., transmit H, receive V) may not exceed the
noise power level of the receivers. On the other hand, when equal amounts of H and
V are transmitted simultaneously and there is sufficient backscattering, the signals
in the two receiver channels will rise above the receiver noise power level almost
simultaneously. To minimize the signal to noise effects in the receivers, we chose to
transmit equal amount of H and V polarized power. In order to match the receiver

basis to the characteristic polarizations of rain, we chose to receive in an H-V basis.

54
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The proposed technique is transmission of equal amounts of H and V polarized
power and reception of the backscattered signals in an H-V basis. The only free
variable is the choice of the phase between the transmitted H and V components.
When the phase difference between the transmitted H and V components is ¢ = +7/2,
the wave is circularly polarized. When the phase difference is ¢ = 0 or ¢ = =, the
transmitted wave is slant linearly polarized.

It was shown in the previous chapter that there is no depolarization due to
backscattering from spherical particles. Spherical particles backscatter the incident
polarization state without depolarization. The backscatter from aligned and ran-
domly oriented scatterers is examined in this chapter to determine the effect of differ-
ent phases between the transmitted H and V components. To simplify the analysis,
the depolarization of the path between the radar and the region of backscatter will

be neglected.

4.2 Aligned Particles

The analysis of backscattering from aligned particles was performed in the last chapter
and the depolarization effects on the degree of polarization and the spherical angles
a and ¢ was determined. We can also find the effect of backscattering from aligned
particles in terms of the measurables, the ratio of the power in the two receiver
channels Wy and Wy, the correlation coefficient of the signal in the two receiver
channels pyy, and the phase of the correlation ¢. Neglecting propagation effects,
the backscattered measurable quantities are related to the incident (transmitted)

polarization state and the ensemble of particles within the scattering volume by the

Wu\® WH>Z'
— = /DR -|—
() = 7om- (2
o = o =4
P?{V = f- Pzﬁv ) (4-1)

equations,

where the superscripts 7 and s represent the incident and scattered values, ZDR
is differential reflectivity, d, is the differential phase shift upon backscattering and
f is the shape correlation coefficient which is a measure of shape variation of the
particles in the scattering volume. We can solve (4.1) to find the meteorological

quantities, differential reflectivity, differential phase shift upon backscatter and the
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shape correlation coefficient,

ZDR = (%)/(%) (4.2)
op = ¢'—¢’° (4.3)
o= lpavl/Ioavl - (4.4)

For the special case of equal amounts of fully polarized H and V transmitted power,
only the differential phase shift upon backscatter 6, depends on the phase difference
of the H and V components of the transmitted polarization state. ZD R is measured
directly by the ratio of the power in the two receiver channels and f is measured
directly by |p%y |-

The phase of the correlation between the signals in the two receiver channels
would be a direct measure of J, if the transmitted phase ¢ = 0. This suggests the
transmitted polarization state should be slant linearly polarized (Wy = Wy, ¢ = 0).
The development in the next section provides a stronger argument not to transmit

slant linear polarizations.

4.3 Randomly Oriented Particles

The analysis of backscattering from randomly oriented particles was performed in
the last chapter. Since the particles are randomly oriented there is no preferred
orientation, 7, of the polarization ellipse. The depolarization due to randomly oriented
particles is azimuthally symmetric around the LHC and RHC poles of the Poincaré
sphere (see Figure A.9). Because of this symmetry the depolarization is best described
in terms of the spherical angles (4, 7), where § is a measure of the ellipticity of the
polarization ellipse and 7 is the orientation angle off of horizontal. The depolarization
due to backscattering from randomly oriented particles in terms of the angles § and

7 and the degree of polarization, p is described by the equations,

tan25° = g-tan 24’ (4.5)
™ o= 7 (4.6)

p* cos 28"
p’cos20® = —— | 4.7
2-9) @

where the superscripts ¢ and s represent the incident and scattered values, and ¢ is a

measure of the ensemble average of the sphericity of the randomly oriented particles.
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Figure 3.7 shows a plot of (4.6) for various values of 0 < g < 1 and incident
polarization states described by the spherical angle, 26°. tan2§° = tan 2§’ when
26 = 0 (linear polarizations) or when 26° = +7/2 (circular polarizations) regardless
of the value of the sphericity parameter, g. The spherical angle § does not change
due to backscatter from randomly oriented particles when the incident polarization
state is circular or linear. The backscattered spherical angle 26° shows the greatest
coherent, depolarization when the incident polarization state is 26 = 7/4 when the
randomly oriented particles are not spherical, g < 1.

Figure 3.8 shows a plot of (4.7) for various values of g and incident polarization
states described by the spherical angle, 2§°. The backscattered degree of polarization ,
p°, shows the largest fractional change from the incident degree of polarization, p*,
when 26° = +7/2 (circular polarizations). The degree of polarization used as a
measure of randomly oriented particles, is the most sensitive when the incident wave is
circularly polarized. The fractional change in the backscattered degree of polarization
is minimized when the incident polarization state is linearly polarized (26° = 0).

We can maximize or minimize the coherent depolarization upon backscatter from
randomly oriented particles. To minimize the signal to noise effects we have already
determined the H and V components of the transmitted wave should have equal power.
From the definition of the Stokes parameter, ) = Wy — Wy, when Wy = Wy, Q = 0.
The transmitted polarization state lies in the U — V plane of the Poincaré sphere of
Figure A.9b. In terms of the spherical angles (o, ¢) the transmitted polarization
state is described by (2a = 7/2,¢). The U — V plane of Figure A.9a can also be
described in terms of the spherical angles, (2,27 = £7/2). In the case of equal
transmitted power in the H and V components, 26 and ¢ are both angles from the
U axis with positive rotation towards the V' axis. Changes in the spherical angle
0 due to backscatter from randomly oriented particles is indistinguishable from dif-
ferential phase shift upon backscatter from horizontally aligned particles. To avoid
misinterpreting backscatter from randomly oriented scatterers as large (non-Rayleigh)
horizontally aligned backscatters we choose to minimize the change in the 26 angle
upon backscatter from randomly oriented particles by transmitting circular polariza-
tion. Furthermore, the fractional change in the backscattered degree of polarization

is maximized for incident circular polarizations.



CHAPTER 4. OPTIMAL POLARIZATION STATES 58
4.4 Summary

The change of the degree of polarization upon backscatter is a function of the vari-
ation of the shapes of the particles within the scattering volume through the shape
correlation coefficient, f, and the average sphericity of randomly oriented particles,
g in the same scattering volume. The depolarization due to backscatter from hori-
zontally aligned particles is insensitive to the phase of the transmitted polarization
state. The change in the degree of polarization due to backscattering from randomly
oriented particles is a function of the phase of the incident polarization state. The
change in the degree of polarization is maximized when the incident polarization
state is circular. The change in the spherical angle 26 is a function of the phase of
the incident polarization state. The change in 24 is minimized when the incident
polarization state is circular or linear. Incident circular polarization minimizes the
change in the spherical angle 2§ due to backscatter from randomly oriented particles
and changes in 20 are less likely to be confused with differential phase shift upon
backscatter from horizontally aligned particles.

For regions where both randomly oriented and aligned particles are present, it may
be possible to sort out the effects due to variations in the shape of aligned particles in
the scattering volume and the effects due to randomly aligned particles or to determine
the reflectivity weighted proportions of aligned and randomly oriented particles by
alternately transmitting circular and slant linear polarizations and receiving in an
H-V basis. Unfortunately, this is beyond the present capabilities of the radar used

in this study and is left as an area of future research.



Chapter 5

System Description and Practical

Techniques

5.1 Introduction

The purpose of this chapter is to describe the radar system as it was configured based
upon the analyses in the previous chapters. An in-depth description of the system
hardware (prior to the modifications of this study) can be found in Chen (1994).
We focus here on the basic system definition and the modifications to the radar that
were made for this study. A cursory look at the techniques used to deal with system

non-idealities, such as receiver channel gain differences and system noise, is given.

5.2 System Description

Table 5.1 presents the important operating parameters and Figure 5.1 shows a sim-
plified schematic of the New Mexico Tech dual-polarization radar. The radar itself
is much more versatile than indicated in the table. For example, the radar has the
capability to transmit pulse widths from 0.25 us to 3 us. The radar can also transmit
noise of 300 MHz bandwidth.

The parameters listed most closely represent the system as it was used to gather
the data of this and the next chapter. A more detailed description of the complete
capabilities of the radar is found in Chen (1994) and in Krehbiel et al. (1996).

The radar operation is as follows. A 1 us pulse is transmitted. The power at the
transmitter is about 16 kW. Some power is lost in the path between the transmitter

and the antenna. The path losses result from long runs of waveguide, rotary joints,

99
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Figure 5.1: Schematic representation of the radar: a) the original configuration and
b) as modified to transmit and receive different polarization bases.
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Antenna:
Type: Cassegrain
Size: 37 Ometers in diameter
3 dB Beamwidth: 0.6
Gain: 48 dBi
First Sidelobe: -16to-20dB
Feed Type: Corrugated horn
Transmitter:
Frequency: 9.8 GHz
Po?grizat%n: closeto RHC
Peak Power: 20 kw
Pulse width: 1 micro-sec
PRF: 4 kHz
Receiver:
IF: 60 MHz
Polarization: HandV
Incoherent channels:
IF amplification: Logarithmic
Dynamic Range: 80dB
Coherent channels:
IF amplification: Constant-phase, amplitude limiting
Dynamic Range: 60 dB

Table 5.1: System parameters of the New Mexico Tech dual-polarization radar

switches and T/R tubes. The effective radiated power is about 5 kW. The signals
in the receivers, due to radar returns, are sampled and digitized at a rate of 1 MHz.
This yields a range gate resolution of 150 meters (3 - c- 7,) and range gate separation
of 150 meters (5 - ¢ 7,) , where c is the speed of light, 7, is the transmitted pulse
width and 7 is the sampling period. The range samples are, therefore, contiguous
and independent. The digitized samples are temporarily stored in a First-In First-
Out (FIFO) buffer and are routed to Digital Signal Processors (DSPs) for further

processing.

5.2.1 Transmitter and Receiver Configuration

Figure 5.1a shows the original configuration of the radar used by Chen (1994). The
radar transmitted alternate pulses of LHC and RHC polarizations. The radar re-
turns were resolved into LHC and RHC components and simultaneously received in

parallel receiver channels. In the case of circular transmitted polarizations there is
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a change in rotation sense of the radar return upon backscatter. For example, when
LHC polarization is transmitted, most of the radar return power will be in the RHC
polarization channel.

When orthogonal polarizations are alternately transmitted and simultaneously
received, there must be a significant amount of depolarization before the power in
the cross-polar channel rises above the cross-polar receiver noise power level. The
receiver channel that corresponds to the transmitted polarization is termed the co-
polar channel. The orthogonal channel is referred to as the cross-polarized channel.
Propagation and/or backscattering effects that transfer power between polarization
channels are termed depolarizing effects.

Figure 5.1b shows how the radar was reconfigured as a result of this study. The
radar transmits circular polarization. The radar returns are resolved into H and
V components and simultaneously received in parallel receiver channels. The two
receiver powers are equal when circular polarization is resolved into H and V com-
ponents. No depolarization of the transmitted wave is required to produce a strong
signal in both receivers. There are no cross-polar or co-polar channels when the
transmitted polarization does not correspond to either of the receiver channels.

The polarization transducer is manually changeable to be either circular or linear
type. Polarization transducers are commonly referred to as Ortho-Mode Transducers
(OMT). In Chen’s case, the OMT was the circular type. A polarization switch routed
the transmitter pulse to one side or the other of the OMT (i.e., the transmitted pulse
was either RHC or LHC).

For this study, the polarization switch was replaced with a power divider. The
power is split with a high power -3 dB coupler and a linear OMT is used. The
transmitter pulse is split into (nearly) equal power levels and routed to the two sides
of the linear OMT. The transmitted wave, therefore, contains nearly equal amounts
of power in the horizontally and vertically polarized components. Since the Stokes
parameter, (), represents the difference in the H and V power, from (A.35), the
transmitted polarization state will lie in the U — V' plane of Figure A.9b (2a = 7/2).

Laboratory measurement of the -3 dB coupler showed the difference between the
power in the two paths was 0.7 dB, with greater loss in the H path than the V path.
The result is the vertically polarized component of the transmitted signal is slightly
greater than the horizontally polarized component.

The phase difference between the transmitted H and V components was manually

adjusted by adding delay (with spacers) into either the H or V path after the power



CHAPTER 5. SYSTEM DESCRIPTION AND PRACTICAL TECHNIQUES 63

split. The goal, as described in the previous chapter, was a circularly polarized
transmitted polarization state with equal amounts of H and V power and a +7/2 or
—m/2 phase difference between Fy and Ey. The H polarization side of the OMT
required one spacer to adjust the phase to approximately —7/2. The transmitted

polarization is close to RHC.

5.2.2 DSP Processing

The coherently received radar returns are down converted for further processing.
The complex voltages (V) in the receivers can be represented by its in-phase (I,)

and quadrature (@) components,

Vo = Ig+jQn
VWw = Iv+jQv, (5.1)

where the subscripts represents the H or V receiver channel. The Iy, Qg, and Vg
values with subscripts, should not be confused with the Stokes parameters, I, ), U
and V.

The coherently received I, and (), signals were digitized and routed to the DSPs.
The DSPs performed the calculations to determine the complex cross correlation of

the signals in the two receiver channels,

The phase of the cross correlation was calculated from,

ImWpyy _ IvQu — InQy

an oy ReWwny  Iyly + QuQv (5:3)
The DSPs also calculated the square magnitude of the correlation coefficient,
o Wuvl?  (Iulv +QuQv)* + (IyQu — InQv)?
|pHV| - - 2 B 2 2 ) (54)
WyWy (I + Q) (I + Q7))
where,
Wy = VaVi=15+Q%
Wy = WWr=I2+Q2%, (5.5)

are the power in the H and V channels. Due to the large dynamic range of the radar
returns, the power in the receiver channels is determined by the incoherent equivalent
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of the coherent quantities of (5.5) and were measured using a logarithmic amplifier.
The coherent quantities of (5.1) were measured using constant phase limiters to pre-
serve the phase information of (5.3).

The radar transmitted pulses at a pulse repetition frequency (PRF) of 4 kHz. Due
to processing speed and memory limitations of the DSPs, returns were processed only
for every other transmitted pulse. In the original configuration, when LHC and RHC
were alternately transmitted, the processed returns always corresponded to the same
transmitted polarization. In the reconfigured system, RHC is transmitted on every
pulse and the speed and memory limitation of the DSPs result in a loss of half the
available return data.

The DSPs accumulated return samples from 32 of every 64 transmitted pulses (16
ms) and passed the averaged data to the host computer. The average of the returns
from 32 transmitted pulses is termed a ray.

In the original configuration, the radar DSPs were used to determine the four

quantities,

Wy = W, [dB]
Wr = W, |[dB]

ool =
LR W Wn
tangrg = tan2r . (5.6)

The phase of the cross correlation, ¢ r was a measure of the angle, 27 in Figure A.9.
The angle 7 indicates the alignment angle of aligned particles. ¢, was found using
an 8x8 bit inverse tangent lookup table. The values calculated in the DSPs are passed
to the host computer as eight bit numbers. The phase of the correlation was passed
to the host computer with a resolution of 360 - 278 = 1.4° per bit so the alignment
direction has a resolution of 0.7° per bit (7 = ¢r/2).

In the reconfigured radar, the radar DSPs were used to determine the four quan-

tities,
Wy [dB]
Wy [dB]
o = Wl
HV W Vo
tan ¢y = - tan(?gbdp + 5@) . (57)

The phase of the cross correlation corresponds to the angle ¢ of figure A.9. The
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¢ angle measures the differential propagation phase, ¢g4,, of the scatterers and the
differential phase upon backscatter, d,. A typical value of ¢4, is on the order of one
degree per kilometer or 0.15 degree per gate. Therefore, better phase resolution was
required in the modified configuration to achieve the needed accuracy.

The same DSP memory limitation would not permit a higher resolution inverse
tangent lookup table. In order to obtain the better phase resolution, the real and
imaginary parts of the cross correlation (5.2) were passed to the host computer as the
most significant 16 bits of 24-bit numbers. The host computer then calculated the
phase from ¢z = arctan(ImW /ReW) with a resolution of 360 - 2161 = .011° per

bit. An additional bit was needed in the host program to indicate a bad data value.

5.2.3 Display Processing

The host computer has an Intel Pentium processor with a 133 MHz clock. A program
in the host computer allows for writing raw data to disk and supports a realtime

display. The program in the host computer is used to:
1. Correct the raw data based upon radar calibration data.
2. Determine the ratio of the power in the two receiver channels.
3. Correct the data for receiver noise.
4. Perform further averaging of the data.

5. Convert the data to quantities with clearer meteorological interpretations.

Calibration Corrections

In the reconfigured system, the host computer has range gated samples of the power
in the two receiver channels (Wgy and Wy in dB), the correlation coefficient squared
(lprv|?) and the correlation phase (¢) in memory available for further processing.
These are the four measured quantities.

In processing, the raw Wy and Wy, values were corrected for small gain differences
in the two receiver channels. The gain difference of the H and V receiver channel was
found to be less than about 0.25 dB during calibration.

There were phase differences in the two receiver channels that caused an offset

in the phase angle ¢ = ¢y — ¢y. The phase offset was determined during system
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calibration and found to be —53 ° between the channels. The measured ¢ values were
corrected for the phase offset of the two receiver channels.

The host program was used to calculate the magnitude of the correlation coefficient

from, |ppv| = V \prv|*.

Signal to Noise Corrections

The parameters Wy, Wy, pgy and ¢ have been corrected for gain and phase offsets
of the H and V receiver channels. Wy, Wy, and pgy are noise contaminated values,
denoted by Wy, Wy, and prv- The noise contaminated ratio of the power in the two

receiver channels was calculated from,

A

— W
LPR=-2 (5.8)
Wy

where LPR is the linear polarization ratio.
As shown in Chen (1994), we can correct for the signal to noise effects in LPR
and pgyy using the expressions,

—  1+1/SNRy
LP = LPR- ———————
i R 1+1/SNRy

puv = puvy/(L+1/SNRy)(1+1/SNRy) , (5.10)

(5.9)

where SNRy and SNRy are the signal to noise ratios in the H and V receiver
channels. The receiver noise was determined by averaging the noise power over an
eight-gate echo free region. The signal-to-noise ratios (SNR) in (5.9) and (5.10) were
estimated from SNR = % — 1, where S was the noise contaminated estimate of the
signal power level and N was the echo free receiver noise power level. The correction
of (5.9) applies to linear (non-logarithmic) LP R values. The signal-to-noise correction
performed by the host computer utilized a logarithmic version of (5.9) in dB. The
LPR values were converted into linear values and stored for later use.

To illustrate the calibration and S/N corrections, Figure 5.2 shows the power in
the two receiver channels, Wy and Wy, the magnitude of the correlation coefficient,
|prv|, the phase of the correlation, ¢ and the linear polarization ratio, LPR, due to
radar returns from a vertical scan through a storm.

Wy and Wy were corrected for gain differences of the two receiver channels and
were converted into logarithmic reflectivity units, dBZ, where Zy and Zy are in

standard meteorological units of mm?®-m™3. |pgy| was corrected for receiver noise in
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payv and ¢, and the derived parameter,

Figure 5.2: The four measurables: Wy, Wy,

Wi /Wy

LPR =
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the two channels. ¢ was corrected for the phase offset of the two receiver channels.
And, the linear polarization ratio, L PR, was calculated from the calibration corrected
power in the receivers and was corrected for receiver noise. The only averaging was
the 32 beam average performed in the DSPs (one ray = 32 beams).

The figure was generated by the host program. The display shown is referred to
as a six-panel display. The upper left panel is considered to be panel one. Panel one
through three run from left to right in the top row. In the bottom row are panels four
through six. The numbers along the bottom of each panel are the range distances
from the radar in kilometers. The numbers along the left edge of panels one and four
are the altitude in kilometers above the radar.

Panels one and three show the power in the H and V receiver channels, respectively.
Panel two shows the ratio of power in the two receiver channels, LPR = Wy /Wy =
Zy/Zy, where LPR is the linear polarization ratio. Above 3 km, Wy < Wy indicating
that the transmitted polarization state had a greater V component than H component
(green and gray regions). Below about 3 km altitude, Wy > Wy indicating that power
was being preferentially backscattered into the H receiver (yellow and gray regions).
This preferential backscattering into the H channel was due to precipitation particles
with positive differential reflectivity (ZDR = Zy/Zy > 1, ZDRyg > 0).

The cross correlation coefficient (|pgy|) of the signal in the two receivers is shown
in panel four. Reduced values of pgy (pgy < 1) are visible in regions that correspond
to high reflectivity (vertical) regions in panels one and three and along a horizontal
line directly below 3 km altitude (indicative of the melting of frozen precipitation).

Panel five shows the phase of the correlation phase, ¢, of the received signal.
¢ ~ 90° indicates the received wave is close to left hand circular (LHC) over most of
the storm. This corresponds to a transmitted RHC polarization state. The reduced
values of ¢ below about 3 km indicates positive differential propagation phase, ¢gp,.

Positive differential propagation phase shift, ¢4, , reduces ¢ from (3.26).
Data Averaging

Further averaging of the data was accomplished by performing the following steps:

1. Determine the spherical angles of the Poincaré sphere, o and ¢, and the degree

of polarization, p.
2. Convert the «, ¢ and p values into the Stokes parameters.

3. Average the Stokes parameters with a five gate and five ray running average.
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4. Convert the Stokes parameters back into averaged a, ¢ and p values.

Once the magnitude of the correlation coefficient, |pgy |, and the linear polariza-
tion ratio, LPR have been corrected for signal-to-noise and the linear value of LPR
has been determined, we determined the polarization state in terms of the spherical
angles on the Poincaré sphere (o, ¢) and the degree of polarization, p. We used (2.29)

and found « in terms of pgyy and LPR,

T Wa- Wy
_ 2|WHV| l\/WHWV‘|
RV WHWV WH — WV
2
tan2a = pav] (5.11)

VLPR - 1/vLPR

The « angle is a function of the magnitude of the correlation coefficient and the linear
polarization ratio, LPR.
We used the first equation in (2.16) and found the degree of polarization,

p o= |1 AWy — W)
\ Wy + Wy)?

AWy — lpav|?)

= 1

\ (WH -+ I/Vv)2
_ 1— 4(1 = |pav|?)
- \ (Wa+Wy )2
WgWy
4(1 — 2
p = 1 ( \prv|?) (5.12)

~ LPR+2+1/LPR"

The degree of polarization, p, is also a function of the magnitude of the correlation
coefficient and the linear polarization ratio, LPR.

The spherical ¢ angle on the Poincaré sphere is the phase of the cross correlation
in an H-V receiver basis, ¢ = ¢gy. Recognizing this, we designated the phase of the
cross correlation as ¢.

To illustrate the conversion between the measured values and the spherical angles
of the Poincaré sphere and the degree of polarization, Figure 5.3 shows the total
polarized power, I, = p(Wy + Wy ), the degree of polarization, p, found from (5.12),
the spherical angle, 2«, found from (5.11), the spherical angle, ¢, which is the same as
the phase of the correlation coefficient, pgy. The polarization state on the Poincaré
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Figure 5.3: Same data as Figure 5.2 showing: Stokes parameter, I, degree of polar-

ization, unpolarized power, and the angles, o and ¢.
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sphere and the value of I, p, 2c, and ¢ at each gate along the ray cursor (black and
red line), referred to as range plots, are also shown.

Panel one shows the total polarized power, I, = p(Wg + Wy), where Wy and
Wy was the power in the H and V channels. To determine I,,, the magnitude of the
logarithmic power was converted into linear values, added, multiplied by the value of
the degree of polarization, p, and converted back into logarithmic units (dBZ).

Panel two shows the degree of polarization. The degree of polarization looks
similar to pgy of the previous figure. This is due to near equal amounts of power in
the two channels. When Wy &~ Wy, the degree of polarization p = pgy from (2.37)
and (2.38).

Panel four shows the spherical angle 2« calculated from (5.11). The value 2o ~
7/2 (light green and gray) indicates near equal amount of power in the H and V
receivers.

Panel five shows the spherical angle, ¢, and is identical to panel five of Figure 5.2.

Panel three shows the polarization state on the Poincaré sphere along the ray
cursor. Values on the Poincaré sphere above the green line are closer to the V po-
larized pole of the sphere and correspond to the red/yellow colors of panel four (2c).
Values below the green line are closer to the H polarized pole and correspond to the
blue/green colors of panel four. Values on the Poincaré sphere near the slant linear
(+U) point, to the right of the red line, correspond to the gray color of panel five
(¢) while values close to (-U), to the left of the red line correspond to the brightest
red values of panel five. Values on the Poincaré sphere close to the intersection of
the red and green line will be close to the green/gray transition of panel four and the
orange/red transition of panel five.

Panel six shows the data values (range plots) along the cursor of panels one, two,
four and five. The gate to gate polarization plots of panel three and the range plots
of panel six are noisy and show the need for further averaging.

From the degree of polarization , p, and the spherical angles o and ¢ we calculated
the normalized Stokes parameters from (A.56),

1
So = I/Ip:—

i

s1 = Q/I, = cos2a
sy = UJI, =sin2acos ¢
s3 = V/I,=sin2asing . (5.13)
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Figure 5.4: The Stokes parameter, I, and the normalized Stokes parameters s;, so,

and s3 and the noisy depolarization path on the Poincaré sphere.
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Figure 5.5: The measurement basis in a system with a tilted OMT is Q'-U’. Q-U is
the true H-V basis. The rotation from horizontal of the OMT is 7 = 9.5°.

The Stokes parameter, I and the normalized Stokes parameters s, so, and s3 are
shown in panels one, two, four, and five of Figure 5.4. Panels three (Poincaré sphere)
and six (range plots) are identical to Figure 5.3. The values of the polarization state
on the Poincaré sphere correspond to the normalized @), U, and V values along the
ray cursor of panels two, four and five. The near uniform red color of panel five
indicates a different color palette may provide more visual detail.

The Stokes parameters (s1, s, s3), the total polarized power, I,, and the degree of
polarization p, were further averaged. The averaging up to this point consisted only
of the averaging of 32 beams in the DSPs. The additional averaging involved a five
gate running average (5 x 150 meters = 750 meters) and a running average over five
rays. The spatial resolution of the ray to ray averaging is dependent on the scan rate
of the antenna. When the antenna is stationary, the ray to ray averaging is a time
average. At the fastest scan rate used in the acquisition of this data, estimated to be
about 8° s71, the ray to ray averaging corresponded to about 700 meters. Each data
point is a result of 800 (32 x 5 x 5) independent samples. This method averaged the
data in the cartesian (Q,U,V) space.

The OMT of the radar was inadvertently rotated from true H and V when the
radar was originally constructed. Through calibration the tilt of the OMT was de-
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termined to be about 9.5°, in a CCW direction when viewed from behind the dish in
the direction of the transmitted pulse. Since the Stokes parameters are known, it is
simple to correct for the feedhorn tilt. The correction is a rotation about the V' axis
(i.e., in the 7 or Q-U plane, see Figure A.2). We will assume the Stokes parameters
@ and U in (5.13) are primed quantities. We can determine () and U in a true H-V

basis using a simple rotation,

Q = Q' cos(2myy) + U'sin(273)
U = U'cos(2my) — Q' sin(271) (5.14)

where 7y, is the tilt of the feedhorn from horizontal or vertical. Q and U are the '
and U’ values corrected for the tilt of the OMT (see Figure 5.5).

Figure 5.6 shows the data of Figure 5.4 after the additional averaging. The path
the polarization state takes from gate to gate is now much clearer on the Poincaré
sphere of panel three. The rotation to correct for the feedhorn tilt can be seen when
panel three of Figures 5.4 and 5.6 are compared. The averaging has reduced the
variance and this is seen in the range plots of panel six. The interpretation of the
gate to gate path on the Poincaré sphere is considered later.

The color palette of panels two, four and five has been changed to a ”zebra
palette”. The zebra palette is described in Hooker et al. (1995). The zebra palette as
developed by Hooker et al. (1995) has 256 distinct colors. As used in this study the
zebra palette was limited to 128 colors due to size limitations in the color palette of
the 800x600x256 video display mode. The zebra palette is useful since small changes
in data values show up as large contrast differences in the data display.

Finally, the averaged Stokes parameters are used to recalculate the spherical an-
gles, o and ¢, of the Poincaré sphere,

N
y Q
tan¢g = T (5.15)

The a and ¢ angles now represent the polarization state in a true H-V basis.

tan2a =

Figure 5.7 shows the same data of Figure 5.3 after the averaging operation that
was performed on the Stokes parameters. Panels four and five show the («, ¢) angles
of the polarization state of the radar return displayed using a zebra color palette.
The range of the 2« values in panel four is 0 to 7 radians which corresponds to
about 1.4 degrees per color. The color sensitivity range is —7 to 7 for the ¢ values,
corresponding to about 2.8 degrees per color.
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Figure 5.6: Same data as Figure 5.2 showing Stokes parameter, I, degree of polariza-
tion, p, the Poincaré sphere, and the angles, o and ¢ after averaging with a five gate

running average and a five ray running average.
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As was pointed out previously, the a and ¢ angles could be and were determined
directly from the measurements. By performing the additional step of calculating the
Stokes parameters, the additional averaging was be performed in a Cartesian space
and any problems associated with averaging angles was avoided. Determination of the
Stokes parameters also offers a convenient way to correct for the tilt of the feedhorn.

The « angle and degree of polarization calculation are seen from (5.11) and (5.12)
to depend only on LPR which is a power ratio and pgy. Only the difference (in
dB) of the power in the two receiver channels and pgy are needed to determine the
polarization state and the degree of polarization.

Meteorological Quantities

The spherical angles on the Poincaré sphere can be related to meteorological quan-
tities. The change in the angle 3 is related to the logarithmic difference between
the differential reflectivity and the differential attenuation. The ¢ angle is related
to the combined effects of differential phase shift upon backscatter and differential
propagation phase.

The combined effects of differential reflectivity, Z DR, and differential attenuation,
Ay /Ap, are determined from (3.11). Using the definition tan 8 = /Wy /Wy we find,

. [A,
t S [ —t v 5.16
wi = 77w\ Ay P (5-16)

where Ay /Ag is the two way differential attenuation and the superscripts ¢ and r
represent the transmitted and received quantities. Converting (5.16) to logarithmic
units,

20log(tan 8°) = AAgz — ZDRyp + 20log(tan 3) , (5.17)

where AAyp = 10log(Ay/Ay) is the two way differential attenuation and ZDRyp =
10log(ZDR) is the differential reflectivity, both in dB. We can solve for the quantity,
ZDRgp — AAygp = 20log(tan 8°) — 201og(tan 3°). The difference of the differential
reflectivity and the differential attenuation is related to the transmitted and backscat-
tered spherical angles, 3* and 3°.

We want to use the averaged Stokes parameters to determine the combined effects

of differential reflectivity and differential attenuation. From Table 2.1 we have

Wy /Wy = (I —Q)/(I+Q) = tan?J . (5.18)
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And, since cos2a = Q/(pI) from figure A.11 we also get,
Wy /Wy = (1 —pcos2a)/(1 + pcos2a) = tan® 5 . (5.19)

We can use Equation 5.18 to find 5 in terms of the averaged Stokes parameters or
Equation 5.19 to find 3 in terms of p, and «.

Figure 5.8 shows a display of the total polarized power, I,,, the degree of polariza-
tion, p, the quantity differential reflectivity minus differential attenuation, in dB, and
the specific differential phase, Kpp. The specific differential phase, Kpp, is the range
derivative of ¢, in degrees per kilometer. The depolarization path on the Poincaré
sphere and range plots are also shown.

Panel one shows the Stokes parameter, I,, or the total polarized power in dBZ.
Panel two shows the degree of polarization, p. Panel four shows the difference of the
differential reflectivity and the differential attenuation in dB. Panel five shows the
specific differential phase, Kpp, in degrees per kilometer.

In panel four we see that the ZDR — A A over most of the storm was on the order
of about 1.5 dB. At the range of about 34.5 kilometers from the radar, the ray cursor
(black and red line) enters a region of lower reflectivity in panel five. The ZDR value
in panel four dropped to about 0.75 dB beyond 34.5 kilometer range. There appears
to be little differential attenuation along the ray.

The data in panel five indicates three regions of positive specific differential phase
at 28, 31.5 and 34.5 kilometers along the ray cursor. Positive specific differential
phase is an indication that the radar beam is leaving regions of large (non-Rayleigh,
d¢ # 0) scatterers.

The Poincaré sphere display in panel three of Figure 5.6 was used as a guide in

the interpretation of the data of panels four and five of Figure 5.8.

5.3 Determining Electrical Alignment Directions

Electric fields in thunderstorms can align ice crystals or needles along the electric
field lines in the upper parts of the storm where ice crystals are present. We can use
analysis of the coherent depolarization path on the Poincaré sphere to determine the
electrical alignment direction.

There is one assumption necessary for determining alignment direction: the co-
herent depolarization is dominated by differential propagation phase shift (i.e., at-

tenuation and differential attenuation is negligible). This is a good assumption when
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Figure 5.8: The Stokes parameter, I, degree of polarization, P, and meteorological

quantities, ZDR — DA, and Kpp.
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there are no large hail or graupel particles in the region of interest. Otherwise, the
determined alignment directions are in error. McCormick and Hendry (1975) refer
to such alignment directions as “apparent” alignment directions.

Previously, we have considered the case where the characteristic polarizations are
H and V. When a characteristic polarization is incident upon a region, the backscat-
tered polarization state from that region is the same as the incident polarization state.
The characteristic polarization state is not cohrently depolarized upon backscatter.
For example, ice crystals or needles that are aligned either horizontally or vertically
have H and V characteristic polarizations.

When we determine intermediate alignment directions, the characteristic polar-
izations are the alignment angle 7 and 7+7/2 (6 = 0). If the transmitted polarization
state is linear, and the particles happen to be aligned at the same angle as the trans-
mitted polarization then the radar is blind to the differential propagation effects. This
is the fundamental reason why it is advantageous to transmit circular polarization
and not a linear polarization state.

We have already seen that propagation through a region with a differential propa-
gation phase shift moves the polarization state in a plane that is perpendicular to the
line connecting the characteristic polarization states. In particular, the polarization
state moves along the intersection of the plane with the Poincaré sphere (a circle).

If the coherent depolarization is dominated by differential propagation phase, then
there is one plane that contains the polarization states at consecutive range gates and
that is parallel to the V axis of the Poincaré sphere. The normal to this plane, defined
in the proper way, points at an angle 7 off the Q axis. The alignment direction is 7.

The 7 plane is the Q-U plane. Suppose that we have at range gate n the polariza-
tion state defined by the Stokes parameters, P, = (Qyn, Un, V,,). At range gate n + 1
the polarization state is P,y 1 = (Qn+1, Uns1, Var1) (see Figure 5.9). There is a plane
that is defined by the two polarization states and is parallel to the V axis. We can also
define this plane by two vectors V,,0 and (Qny1 — Qn)G+ (Uny1 — Uyp )+ Viy 10, where
q, 4 and 9 are unit vectors along ), U, and V', respectively. V,,0 defines a family of
planes parallel to V while (Qn1+1 — Qn)d+ (Upt1 — Uy)t+ V410 is a particular plane
of the family.

To find the direction of the normal to the plane, we will use the vector cross
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b)

Figure 5.9: Depolarization process dominated by differential propagation phase shift
a) on the Poincaré sphere and b) in the Q-U plane. The characteristic polarization

is (@', 0,0) corresponding to an alignment direction, 7 of the medium.
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Figure 5.10: The Stokes parameter, I, degree of polarization, alignment directions,

coherent depolarization rate, I'; and ¢.
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product. Crossing the second vector into the first vector,

q U U
det Qn—|—1 - Qn Un—|—1 — Un Vn—i—l = Vn(Un—H - Un)q - Vn(Qn-H - Qn)a . (520)
0 0 Va

To find the angle 7, we have from (A.59,

tan 27 = g - —Vn(@ni1 = Qn) . (5.21)

Q xq Vn(Un+1 - Un)

The sign of the V' term is important since we find 7 using a four quadrant arctangent

look up table. When V' is negative the determined alignment direction will be off by
7/2 if the sign of this term is neglected.

When the incident polarization state is one of the characteristic polarizations,
then (5.21) becomes,

Vo s (Ung1 — Uy) 0-0 "’

tan 27 = (5.22)

and the alignment direction is indeterminant.

Hidden in the above analysis is the fact that we are taking the lefthanded cross
product. We need to use the lefthanded rule instead of the righthanded rule because
¢apis by definition, positive when propagation is through a rain region. The rain is
horizontally aligned. Positive ¢4, actually moves in the —¢ direction on the Poincaré
sphere. To determine alignment direction properly we have to use the lefthand rule.

Figure 5.10 shows the total polarized power, I,,, an electric field map perpendicular
to the scan plane, the coherent depolarization path on the Poincaré sphere, the net
coherent depolarization rate on the Poincaré sphere, the correlation phase, ¢, and
range plots. The ray cursor (black/red line) is through the upper part of the storm.

Panel one show the total polarized power, I, in dBZ.

The plane of polarization of an electro-magnetic wave is always perpendicular to
the direction of propagation. The display of electrical alignment directions like all
the other displays in the previous figures are in the plane of the beam meaning the
alignment directions can only be displayed as colors.

If we change the display plane to be perpendicular to the radar beam, we can
display the alignment directions using vectors. The view of the display is electrical
alignment as seen when viewed in the direction of the transmitted beam. In other

words, the display plane is now the same as the plane of polarization. The direction
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of the vectors will show the apparent alignment direction. The length of the vectors
are scaled to the net coherent depolarization rate. The background of the alignment
maps is the Stokes parameter, I,,.

Panel two shows an example the apparent alignment direction maps. For clarity
vectors that are close to vertical (within +22°) are black. Vectors that are not close
to vertical are magenta. Depolarization rates in the upper part of the storm can be
as high as 4 deg/km. The alignment vectors are scaled to 2 deg/km. Very small
dots are regions with net coherent depolarization rates close to 2 deg/km. Vectors
approaching the reflectivity box sizes apparent in the figure have close to 3 deg/km
coherent depolarization rate. Vectors with a coherent depolarization rate higher than
10 deg/km are truncated to 10 deg/km for display purposes. These higher net coher-
ent depolarization rates only occur below the melting level.

Panel three shows the coherent depolarization path on the Poincaré sphere. At
about the range where the ray cursor changes color (from black to red) the polarization
state is close to the equator of the Poincaré sphere. Beyond this range the polarization
state shows steadily increasing ¢ values(towards -U) and with 2« & constant. This is
an indication of vertically aligned ice crystals with no attenuation and only differential
propagation phase shift.

Panel four shows the value of the net coherent depolarization rate across the
surface of the Poincaré sphere. Since we know the value of 2ax and ¢ at every gate, we
can find A(2a) and A¢ from gate-to-gate. We can then use spherical trigonometry
to calculate a coherent depolarization rate. If we denote the net angular change
of the polarization state from one range gate to the next as A<y, then cos Ay =
cos A(2a) cos A¢g. The value of A+ determined in this way is in units of degrees per
gate. Since the gate spacing is 150 meters we can convert this coherent depolarization
rate into degrees per kilometer. In regions of aligned ice crystals, when attenuation
is negligible, the only coherent depolarization effect is due to differential propagation
phase shift, ¢g,.

Panel five shows the correlation phase, ¢. Regions of vertically aligned ice crys-
tals will show increasing ¢ with range. The ranges with the largest net coherent
depolarization contain the region with the largest and/or highest concentration of ice

crystals.
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5.4 Summary

In this chapter we examined some of the performance capabilities of the radar. The
processing of the data was examined from the four measured quantities, Wy, Wy,
lprv|?, and ¢y to derived parameters, the spherical angles o and ¢ and the degree
of polarization , the Stokes parameters, (), U, V', and the meteorological parameters,
differential reflectivity minus differential attenuation, ZD R ;g—AA4p, and the specific
differential phase, Kg4,. Further averaging to reduce the variance of the data was

performed in the cartesian space, (Q,U, V).



Chapter 6

Discussion and Summary

6.1 Discussion

The Poincaré sphere is an extremely useful tool for understanding polarization tech-
niques in dual-polarization radars. The set of all possible polarization states is a
compact set which allows them to be described by points on a sphere. Polarization
states have a definite geometrical relationship to one another. For example, orthogo-
nal polarization states are always diametrically opposed on the Poincaré sphere. The
geometrical description allows an understanding of the relationships between the var-
ious polarization techniques that have been and are currently being used by various
radar meteorologists around the world. The geometrical description also allows us to
answer the questions originally posed in the Introduction.

The first question posed in the Introduction was: When is a single transmitted
polarization adequate for determining the meteorological quantities? A single trans-
mitted polarization is adequate for determining the meteorological quantities for the
case of horizontally aligned particles. A single transmitted polarization is adequate
for determining the meteorological quantities for the case of spherical and randomly
oriented particles. For many meteorological studies, aligned particles are assumed to
be horizontally aligned.

The next two questions posed in the Introduction can be grouped together: What
other transmitted polarization state, if any, will provide additional meteorological
information? And, what conditions necessitate the transmission of orthogonal po-
larization pairs? For the case of horizontally aligned particles, there is no other
transmitted polarization state that will provide any further information. To test the

horizontal alignment assumption, alternate orthogonal polarizations must be trans-
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mitted as shown in Section 3.5. When there is a mix of aligned and randomly oriented
particles, alternate transmission of non-orthogonal polarizations may provide enough
additional information to sort out the two particles types. This is left as an area for
further research.

The last question in the introduction was concerned with the optimal transmitted
polarization and receiver basis for meteorological studies. The answers to this question

are enumerated below:

1. Assuming that rain is horizontally aligned, receive the backscattered signals in
an H-V basis. Matching the receiver polarization basis to the characteristic
polarizations of the medium results in the conceptually clear coherent depolar-
ization trajectories on the Poincaré sphere.

2. To avoid low signal-to-noise ratios in either receiver, transmit an equal amount

of H and V polarized power.

3. To maximize the change in the degree of polarization due to backscatter from

randomly oriented particles, transmit circular polarization.

4. To minimize the change in the spherical angle 26, transmit circular polarization.
The change in the 26 angle is minimized because changes in 26 due to backscatter
from randomly oriented particles is indistinguishable from differential phase

shift upon backscatter from large (non-rayleigh) horizontally aligned scatterers.

5. If there is a need to determine ice crystal alignment in the upper part of thun-
derstorms, do not transmit any linear polarization since the linear polarization
will not be depolarized by ice crystals aligned along or perpendicular to the

transmitted linear polarization.

The introduction of the spherical angle  resulted in a simplification for the case
of horizontally aligned particles. The spherical angle « is defined in terms of the
polarized component of the wave. The angle § is a partially polarized analog of the
« angle. The relationship between the parameter pgy(0), the correlation between
co-polar returns when H and V are alternately transmitted, and the degree of polar-
ization, p, has never been clearly established before. Although, it has been stated
previously that they are somehow related. The § angle provides a geometrical rela-
tionship between the degree of polarization, p and the correlation coefficient, pgy .

Transmission and reception of alternate H and V polarizations always requires
that two polarizations be transmitted to achieve the complete polarization response
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(Torlaschi and Holt, 1998). We have seen that transmission of a single circular po-
larization will provide all the depolarization information if the liquid precipitation
is assumed be aligned horizontally. Alternate transmission of orthogonally polarized
waves is necessary to justify the horizontally aligned assumption and is left as an area
for further study.

The use of the Mueller Matrix by many researchers (Yamaguchi et al., 1992;
Jin and Cloude, 1994; Cloude and Pottier, 1996; Guissard, 1994; Ho and Allen,
1994) has not been examined here. The Mueller Matrix approach deals with the
cartesian coordinates of the Stokes sub-space. It is easy to see that the coherent
depolarization effects examined previously using angles on the Poincaré sphere yields
relatively simple results since the polarization states are constrained to the surface of
the (normalized) sphere. The changes in the cartesian coordinates due to coherent
depolarization appear to change in a much more complicated fashion and are therefore
difficult to interpret.

In fact, Baylis et al. (1993) is worth quoting in this regard.

“Although many attractive features of coherency or density matrices have
been demonstrated, it seems generally felt that transformations of such
matrices are limited, as is the Jones calculus, to nondepolarizing trans-
formations and that depolarization can only be treated with the Mueller
matrices while coherent superpositions of waves require the Jones calcu-
lus. As a result, and perhaps dues as well to some inertia from those who
have mastered the Mueller-matrix method and the inconvenience of com-
peting 2 X 2 matrix representations, rather little attention has been paid
to coherency or density matrices in modern texts, whose treatments of
the action of optical elements on polarization are largely limited to Jones
matrices for fully polarized waves and to the Mueller-matrix methods for

partially polarized waves.”

Another possible technique that is evident through an examination of the equa-
tions in the text but never explicitly discussed is that the transmission of an unpolar-
ized wave can result in a polarized component in one of the radar receiver channels if
the scatterers have a preferred direction of alignment. In this case, only one element
on the main diagonal of the polarized portion of the coherency matrix is non-zero.
All other elements are zero and therefore there is very little information about the

scatterers contained in the backscattered wave (since there is no phase information
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available that usually appears in the cross correlation term). The details are not in-
cluded here since the solution is quite trivial. But, it should be noted that this method
would in theory be insensitive to randomly oriented particles and could provide some

information on the degree of alignment.

6.2 Summary of New Results

Poincaré’s geometrical interpretation of the Stokes parameters (i.e., the Poincaré
sphere) was used as a basis to examine some basic questions of radar meteorology,
including: what are the best polarizations to transmit and receive? Examination
of these questions within a geometrical framework provided new results that are
summarized below.

1. The change in the polarization state on the Poincaré sphere, including the
effects of incoherent depolarization (reduction in the degree of polarization)
was determined by analysis for scattering from different classes of particles

(horizontally and non-horizontally aligned, randomly oriented, and spherical).

2. It was determined from the results of the analyses it is best to transmit circular

polarization and to receive in an H-V basis for the following reasons:

(a) Transmission and reception in different polarization bases minimizes low
signal-to-noise ratios (SNR’s). Radar meteorologists typically employ co-
polar/cross-polar techniques (transmit and receive in the same polarization

basis) where the cross-polar channel usually exhibits low SNR.

(b) Incident linear and circular polarizations are incoherently depolarized and
not coherently depolarized by randomly oriented particles.

(c) The quantities, differential reflectivity, Z DR, differential propagation phase
shift, ¢4, and the correlation between the signals in the two receiver chan-

nels, pgy can be determined from a single transmitted polarization.

(d) The change in the polarization state due to horizontally aligned particles
is maximized when the power in the H and V components of the incident

(transmitted) polarization are equal.

e) All possible electric alignment directions of ice crystals in the upper part
g ¥
of thunderstorms can be measured when the incident wave is circularly
polarized. This is not true for incident linear polarizations.
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3. The cross covariance amplitude ratio, W/Ws, (McCormick and Hendry, 1975)
was shown to be a stereographic projection of the polarization state on the

Poincaré sphere onto the complex plane.

4. A geometrical relationship between the correlation between the signals in H and
V receivers, pgy, and the degree of polarization, p was determined.



Appendix A

Descriptions of Wave Polarization

A.1 Introduction

In this appendix we will examine various ways to describe the polarization state of
an electromagnetic wave. The first description of polarization state is based upon
the rotating electric field vector of the electromagnetic wave. The polarization ratio
description is based upon the ratio of orthogonal linear or circular components of the
electric field vector. The polarization state can also be described through the Stokes
parameters. Finally, Poincaré ’s geometrical interpretation of the Stokes parameters
is examined. All the descriptions of polarization state are equivalent for any given
polarization state, except the polarization ratios contain no information about the
degree of polarization.

A.2 Simple Plane Waves

The equation for an electromagnetic wave propagating in the z-direction must satisfy

the one-dimensional wave equation,

0%2E(t,z)  ,0%(t,2)
oz U o2 (A1)

where v is the velocity of light in the medium.
The solution of (A.1) is of the form,

E(t,2) = Ey - Witk (A.2)

where k = 27/) is the wavenumber, ) is the wavelength, w is the frequency of the

1

wave in rad-s~'i, and Ey is the magnitude of the electric field. The plus (minus) sign
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is a solution for a wave propagating in the minus (plus) z direction. We can verify
that (A.2) is a solution to (A.1) by direct substitution of (A.2) into (A.1) and by
noting that vk = w.

The solution (A.2) is in complex exponential form. To find the instantaneous
value of the field we must take the real or imaginary part of the complex solution.
We will choose to take the real part to find the instantaneous value of the field.

Furthermore, we can decompose the solution into spatial and temporal compo-
nents. The instantaneous value of the electric field is then given by

E(t,z) = E(t)E(2) = Eyel“tetit (A.3)

A common convention is to suppress the temporal component of the solution (e/“!).

When the temporal component is suppressed it is an implicit part of the solution.
The direction of the electric field in (A.2) is not specified. But, there cannot be

a component along the direction of propagation since that would violate the wave

equation. For example, assume a solution of the form
E(t,2) = E(z) - ¢/ WiEik2) (A.4)

where the magnitude of the electric field is some unspecified function of z. Upon
direct substitution into (A.1) the result is

OE(z) N 0?E(z)

+4k
Iz 0z 022

=0. (A.5)

The solution is found by equating the real and imaginary parts of both sides of the

equation. The result is

O0E(z) _ 0
0z
O’E(z)
5z 0. (A.6)

The magnitude of the electric field has to be independent of z. The electric field of
the solution to the wave equation has to lie in a plane perpendicular to the direction
of propagation. The plane perpendicular to the direction of propagation is known as
the plane of polarization. Within the plane of polarization, we can choose a direction
for the electric field of the solution, for example the x-direction. The electric field of
the propagating wave of this example will always be directed along x. The wave is

said to be linearly polarized in the x direction.
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A.3 The Polarization Ellipse

In the previous section we found a solution to the wave equation which describes a
propagating electromagnetic wave. The most general propagating wave is elliptically
polarized. Circular and linearly polarized waves are degenerate cases of the elliptically
polarized case. In this section we demonstrate how an elliptically polarized wave can
be decomposed into orthogonal linear components (i.e., horizontal and vertical) or
into orthogonal circular components (i.e., left and right hand circular). Finally, we
show how the polarization ellipse can be defined by either of two sets of angles that
are related to the polarization ellipse.

Since free space and the atmosphere are a linear media, the principle of super-
position applies. Any number of linearly polarized waves may be added to obtain a
general elliptically polarized (GEP) wave. In fact, we will show the sum of two lin-
early polarized waves are elliptically polarized in general. The following derivations
follow those of Mott (1986); Kraus and Carver (1973), and Collin (1991).

First, we will define horizontal and vertical directions in a plane perpendicular
to the propagation direction (the polarization plane). When the propagation path is
horizontal, the horizontal and vertical in the polarization plane are true horizontal
and vertical. When the propagation path is vertical, horizontal and vertical are
defined even though the polarization plane is horizontal. In other words, the definition
of horizontal and vertical directions in the polarization plane is independent of the
propagation direction. We can now define two waves, one polarized horizontally
and one polarized vertically, propagating in the positive z direction with the same

frequency. The instantaneous values of these waves are then given by

En = Re[Eged T 0] = By cos(—kz + ¢x)
Ev = Re[Eye!"F+9v)] = By cos(—kz + ¢y) . (A.7)

Ey and Ey, are the wave amplitudes and ¢y and ¢y are the phase of the waves when
t =0 and z = 0. The direction of propagation is defined by h x ©. where h and 9 are
unit vectors in the direction of H and V, respectively.

We are interested in the form of the solution when we sum these two components
(€ = Exh+EyD). Specifically, we want to show that this wave is elliptically polarized.
To this end we rewrite the above equations as

&n

— = cos ¢y cos(kz) + sin ¢y sin(kz)
Ey
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Figure A.1: A polarization ellipse described by a rotating electric field vector

— = cos ¢y cos(kz) + sin ¢y sin(kz) . (A.8)
Ey

If we multiply the first equation in (A.8) by sin ¢y and the second equation by sin ¢y
and subtract the two we obtain the result,

g—lé sin ¢y — g—‘; sin ¢y = cos(kz) sin(dy — dg) - (A.9)

We now multiply the first equation in (A.8) by cos ¢y and the second equation by

cos ¢ and subtract the two,

B, cos py — 7. 008 ¢p = sin(kz) sin(pg — oy ) . (A.10)

Squaring (A.9) and (A.10) and adding the result,
(SH )2 _ o Evén

En Ev
14

2
cos(dg — dv) + (5‘/) = sin’(¢u — v)

Ey EvEy Ey
EH 2 SVSH gv 2 N .. 9
(E—H) —_ 2EVEH COSQS + (E—V) = Sin QS y (A].].)

where in the second equation we have defined ¢ = ¢y — oy

Equation A.11 is the equation of a rotated ellipse. The general form of a rotated
ellipse is given by Az? + Bxy + Cy?+ Dz + Ey + F = 0 (Eves, 1973), where x = £
and y = &y. For the case in which the ellipse is centered at the origin the ellipse is
of the form Ax? + Bxy + Cy? + F = 0. Thus we have shown the sum of two linearly

polarized waves is an ellipse. When ¢ = +7/2, Equation A.11 can be written as

(2_1:[)2 L (2_‘;)2 —1. (A.12)
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When Ey = Ey, Equation A.12 is the equation of a circle. Figure A.1 shows the
rotated ellipse of (A.11) that is traced out by the time varying instantaneous values
of the electric field vector, & = /€3 + EZ.

A.3.1 The Polarization Ellipse in terms of § and 7

Continuing the investigation of Equation (A.11), we note that at a particular instant

in time shown in Figure A.1 that the H and V components of £ are

Eg = Ecosb
&y = Esinb, (A.13)

where 6 is the time varying angle from the H axis to £&. We can substitute these

values in for the instantaneous components into Equation (A.11); the result is

2 . 2 90 -
sin?¢ = <5cos€> +<Esm0> _52s1n000s0cos¢

Ey Ey EgEy
E? cos? EZ% sin § — 25si EyFE
sin?g = &2 v cos” 0 + E¥ sin” § _ 251n0c050 uEy cos ¢ ‘ (A.14)
By By
Solving for &£,
52 _ (EHEV sin ¢)2 (A 15)
(Ey cosf)? + (Exsinf)? — 2sinfcos OEy Ey cos ¢ '
Or, ‘
£ = EHE\/SID¢ (A16)

[(By cosf)? + (Ey sin)? — sin 20 Ey Eyy cos ¢]7
The magnitude of the electric field vector will be a maximum for some value of
6. To find this angle, we can differentiate Equation (A.16) with respect to  and set
it equal to zero. The value of # that maximizes £ is designated 7 and is shown in
Figure A.2a. The resulting expression for 7 is:

2cos ¢
tan 27 = @ . (A17)
Eyv Ey

The angle 7 is seen to explicitly depend on the magnitudes of the H and V components
and on the phase difference between them. 7 is called the ellipse tilt angle or the
orientation angle.

The angle 0 in Figure A.2a provides a measure of the ratio of the radii of the
circles that inscribe and circumscribe the ellipse. Figure A.2b shows the polarization
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Figure A.2: Polarization ellipse and a) the definition of angles 7 and ¢ and the semi-

major and semi-minor axes (m and n), b) inscribed and circumscribed circles.

ellipse with the inscribed and circumscribed circles. The derivation of the equation
for ¢ in terms of the H and V components of the wave is more involved than the
derivation for 7, even though the result appears to be as simple. The derivation in
(Mott, 1986, pages 58-62) is recommended for the interested reader. The result is

(A.18)

From Figure A.2a we can see tand = n/m, where n is the length of the minor
semi-axis and m is the length of the major semi-axis of the ellipse. Since (A.18) is in
terms of 25 we would like to find sin 2§ in terms of n and m. Using a trigonometric

identity and the definition of tan d, we can find

2tand
1+ tan2§
2(n/m)
1+ (n/m)?
§n2s = —2Um (A.19)

m2 4+ n?

sin2§f =

We can write A.19 in the same form as A.18 and equate the two,

2sing 2

Ew , Ev = n 4 m°
EV+EH m+n

(A.20)

This equation relates the ratio of the major and minor semi-axes (m and n) to the
magnitude and phase difference of the H and V components of the polarization ellipse.
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a yk,,i:7<:ifi‘.ﬁ»"—'— —_—‘\9/« (EqYy)

Figure A.3: Polarization ellipse described by a circumscribed rectangle (with aspect

ratio «) and its intersection with the polarization ellipse.

The polarization ellipse is defined in terms of the magnitude of the H and V electric
field components. The ellipse can also be defined in terms of the shape, through the
angle, §, and the orientation of the ellipse through the angle, 7.

A.3.2 The Polarization Ellipse in terms of o and ¢

There is an alternate way to visualize Equation (A.11). The rotating E-field vector
of Figure A.1 will always fit in a rectangle with sides 2Ey and 2Ey (see Figure A.3).
Equation A.11 holds in general. When &, = £Ey, (A.11) simplifies to

2
(gH) :|:2£—Hcos¢+1—sin2¢ = 0

Ey Ey
oH g =
(EH> F EHcoqu-cos 0] 0
En 2
(—:Fcosq§> = 0. (A.21)
Eyn

This equation shows that the intersection of the ellipse and the horizontal sides of
the bounding rectangle depends only on the phase difference, ¢, between the H and
V components. One of the intersection points is shown in Figure A.3 as

y=&uw =FEpncoso . (A.22)

Similarly the intersection of the ellipse and the vertical sides of the bounding rectangle
in Figure A.3) can be found to be

x=E&y = FEycos¢ . (A.23)
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We can look at some special cases to learn more about the above relationships.
For example, if the H and V components are in phase (¢ = 0) or out of phase (¢ = )
the polarization ellipse degenerates into a line drawn between opposite corners of the
bounding rectangle. This corresponds to a linear polarization rotated at the angle 7.
If ¢ = +7/2, the polarization ellipse intersects the bounding rectangle where the H
and V axes intersect the rectangle which is an ellipse rotated at the angle 7 = 0 or
T=m/2.

We could have investigated where the polarization ellipse intersects the V axis
and we would have found that the relationships are similar to the above except the
cos ¢ term is replaced by sin ¢ (y/FEy = £sin ¢). This relationship will look familiar
to anyone familiar with Lissajous figures and phase measurements made using an
oscilloscope.

The angle « in Figure A.3 is defined as the arctangent of the ratio of the sides of
the bounding rectangle,

Ev
t =—. A.24
an o By ( )

The tangent of o depends on the magnitudes of the H and V components of the wave.
For example, when Ey = 0, @ = 0 and the polarization state is linear at an angle
7 = 0 which corresponds to a horizontally polarized wave. When Eg = By, a = 7 /4
and the polarization ellipse is bounded by a square. The phase angle between the
H and V components determines the intersection of the bounding square and the
polarization ellipse from (A.22) and (A.23).

In Figure A.2 we see the (d,7) description of the polarization ellipse involves
the ratio of the radii of circumscribed and inscribed circles can the tilt angle of the
ellipse, 7. The description of the polarization ellipse through the angles § and 7 can
be thought of as a circular description.

On the other hand, Figure A.3 shows that the polarization ellipse can be described
by the size and aspect ratio of a bounding rectangle. The aspect ratio of the sides
of the rectangle is related to the angle . The orientation of the polarization ellipse
inside the bounding rectangle is determined by the phase difference (¢) between the
H and V components of the wave. The description of the polarization ellipse by the
angles o and ¢ can be thought of as a rectangular description.

We can see the polarization state may be described in terms of two sets of angles,
d and 7 or a and ¢. We refer to these as two sets of angles as the (d,7) or (o, @)

description of polarization state. Since the (4,7) and («, ¢) descriptions refer to
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the same polarization ellipse, the two descriptions are related. The relationships
between the two descriptions will be determined after two geometrical descriptions of

polarization state are developed.

A.4 Polarization Ratios

In the previous section we presented a description of the polarization state of an
electro-magnetic wave in terms of the magnitude and the phase of the component
electric field vectors. The rotating electric field vector shown in Figure A.1 appears
as it would at a fixed point along the propagation path if electric fields could be
visualized. In this section the description of polarization state moves into the realm
of mathematical abstraction. The polarization state is described as a point in the
extended complex plane through the use of polarization ratios. This description of
polarization state is a planar description. The mathematical abstraction is extended
in subsequent sections where any polarization state will be described as a point on a

sphere.

A.4.1 Linear Polarization Ratios

As we have seen in Section 2.2, the polarization state can be described in terms of
the magnitude and phase of electric field components in two orthogonal bases (e.g.,

H and V). In a linear H-V polarization basis, a complex polarization ratio can be
defined as:

E. elov
P = m
tana = &
Ey
P = (tana)e™?. (A.25)

P is termed the linear polarization ratio (LPR). The domain of P is the complex
plane. The magnitude of P varies between zero and infinity. The extremal values
occur when Ey, = 0 and when Ey = 0. The polarization state when Ey, = 0
corresponds to the origin in the complex plane and is termed polarization base. The
range of o is 0 < o < 7 since 0 < By /Ey < oo. The range of ¢ is —7 < ¢ < 7.
Figure A.4 shows the complex plane and the location of specific polarizations

states in terms of the linear polarization ratio, P. Specific polarization states in terms
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Im(PR)
(0,j)
Re(PR
(-1,0) (0.0) (1.0) (e(FR)
(0,4)

Linear Circular Slant
Polarization Polarization Polarization
Ratios Ratios Ratios
H 0 LHC 0 +45 0

\Y inf. RHC inf. -45 inf.
+45 1 H 1 LHC 1
LHC i +45 j H j
-45 -1 \% -1 RHC -1
RHC - -45 - \Y -

Figure A.4: Generic polarization ratio in the complex plane. The polarization base
corresponds to the origin and the polarization orthogonal to the base is at infinity.

Other special polarization ratios lie on the unit circle.
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Figure A.5: polarization ellipse in terms of the 7 angle and n and m.

of other polarization ratios are also shown and will be discussed later. P can be
written in the complex form P = tan a(cos ¢ + j sin ¢). Thus, any polarization state
can be expressed as a complex number; a point in the complex plane. A point in the
complex plane can also be defined through the angles tana = Ey/Ey, the ratio of
the magnitude of the H and V components and the phase difference between the H
and V components, ¢ = oy — oy

When |P| =1, the H and V components of the wave are equal, tana = Ey/Eg.
When Ey < Ey, tana < 1. Polarizations states that lie within the unit circle in the
complex plane have H components that are larger than V components (Ey > Ey ).
Polarization states that lie outside the unit circle in the complex plane have larger V
components than H components (Ey > Ej). Polarization states that lie on the unit
circle have equal H and V components (Ey = Ep).

A.4.2 Circular Polarization Ratios

In the previous sections we showed that two linear polarized waves (H and V) can be
used as a basis to generate an elliptically polarized wave. In this section we will show
how two left and right hand circularly polarized waves may also be used as a basis to
generate an elliptically polarized wave.

A general elliptically polarized wave can be constructed by adding left hand cir-
cular (L) and right hand circular (R) waves. We define the magnitude of the waves as
E}, for the L. component and Fr for the R component. E7 and Eg are nonnegative
real quantities.

When the counter rotating waves electric field vectors align they will add con-
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structively so that m = Ej, + Er (See Figure A.5). The angle where this occurs is
7. The 7 of Figure A.5 is zero. When the counter rotating waves are anti-parallel at
tau £+ w/2 they will add destructively to give +n = F; — Eg. The + is needed since
n is a nonnegative length. The negative sign is used when Er > E}, and the positive
sign is used when Er < Ep. We can use these two relationships to determine Ej, and

Er in terms of n and m,

mEn
By = =
Ep = "15”. (A.26)

When n = m either £, = 0 or Eg = 0 and the wave is circularly polarized. When
n = 0 then £, = Eg and the wave is linearly polarized. m is never zero since it is by
definition the major semi-axis of the ellipse (0 < n <m and m > 0).

The circular polarization ratio (CPR) is defined as,

Egr .
— el A27
where F; and Epg are the magnitudes of the LHC and RHC components, and 7 is
the angle where the two counter rotating electric field vectors align. Substituting in

the m and n values from (A.26) for E;, and Eg we find

_mFn

q= e*T (A.28)

m=Emn
From Figure A.2, tand = n/m so that the circular polarization ratio in terms of

0 is,

mFn

— ej27'
1 mEn
]'ZF% Jj2r
li%
LFtand

We can sort out the signs in the above equations by recognizing that the polarization
base of the circular polarization ratio as defined here is L (¢ = 0 when Ex = 0).
For left hand circular polarization n = m, E;, = m and EFr = 0. And since tand =

m/m =1 the correct sign convention for the CPR with an LHC base is,

_ 1—tand 4,

= A.30
1+tand ( )

q
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We should note here that the alternate sign convention for the CPR would result
from a change in the polarization base to right hand circular polarization. The range
of 4 is defined so that ¢ = 0 for LHC and ¢ = oo for RHC, ¢ is =7 < < 7. And the
range of 7 is —m/2 < 7 < 7 /2. The factor of two in the phase factor in the definition
of CPR is necessary so the domain is the entire complex plane.

The linear polarization ratio, P, and the circular polarization ratio, ¢, can be
used to describe the same polarization state. Therefore, it should be possible to
map between the two polarization ratios: P and q. Mott (1986) has shown that the
mapping from any linear polarization ratio P into the circular polarization ratio q is
given by:

1+ 4P
~1-jP°

q (A.31)

Equation (A.31) is a bilinear fractional transform. The bilinear fractional trans-
form is also known as a linear fractional transform or Mébius transform (Kreyszig,
1972). A polarization ratio in any basis can be transformed into any other basis and
any polarization state can be transformed into any other polarization state using a bi-
linear fractional transform (Bolinder, 1981). The general form of a bilinear fractional

transform is given by
az+b

cz+d’
where w, a, b, c,d and z are all complex, in general.

(A.32)

The bilinear fractional transform is a conformal mapping. The z-plane is mapped
into the w-plane. One important aspect of the bilinear fractional transform is there
are always two polarization states that are mapped into themselves. These two po-
larizations are invariant to the transformation. They are also referred to as the
characteristic polarizations of the transformation. For example, particles aligned hor-
izontally will backscatter a horizontally polarized wave with no vertically polarized
component. The backscattered polarization state is the same as the incident polar-
ization state. An incident H polarization state a characteristic polarization of the
horizontally aligned backscatters. If circular polarization is incident upon the same
horizontally aligned scatters, the backscattered polarization state would include both
left and right hand circular polarization components.

Figure A.6 is identical to Figure 13 of Slater (1950) showing how the bilinear
fractional transforms the polarization states in two ways. The first is a streaming from
one characteristic polarization towards the other. The other is a rotation around the
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Figure A.6: The conformal mapping of the bilinear fractional transforms polarization
states two ways. There is a general streaming from one characteristic polarization (1)

to the other (2). And a general rotation around the characteristic polarizations.

characteristic polarization states. The characteristic polarizations of the transform of
(A.31) can be found by solving

az+b
= ) A.33
* cz+d ( )
The two characteristic polarizations of the general bilinear fractional transform
are,
a—d a—d\° b
= + - A.34
* 2c \l( 2c ) + c ( )

The solution of the above equation is not as important as the concept that there
are always two polarization states that are invariant to a particular polarization

transformation (or mapping).
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A.4.3 Summary

Of the three “special” polarization ratios of Figure A.4: linear, circular and slant.
The linear and circular are most often used to describe polarization states. The slant
polarization ratio is seldom used and is generally considered to be a special case
of the LPR. The polarization base is the polarization that lies at the origin in the
complex plane when polarization ratios are used to describe the polarization state.
The common, but not exclusive, choices of bases are Horizontal, +45°, and Left Hand
Circular (Mott, 1986) (H,+,L). These are the assumed polarization ratio bases used
in this dissertation.

Figure A.4 shows a generic polarization ratio in the complex plane. The polar-
ization that corresponds to the polarization base lies at the origin. The orthogonal
polarization is at infinity. The other “special” polarizations lie on the unit circle.
Note that for the Circular Polarization Ratio case that the rotation direction (or

helicity) inside and outside the unit circle have opposite senses.

A.5 The Stokes Parameters

In the middle of the nineteenth century, Stokes (1852) showed that the polarization
state of light could be determined by measurements using a combination of polarizers
and phase retarding plates. The first measurement involves measuring the total power
incident on a detector from a particular source. This measurement determines the
total intensity and the first Stokes parameter (I). A linear polarizer is then placed
between the source and detector. The difference of the detected power when the
polarizer is rotated to pass horizontally and vertically polarized light is the second
Stokes parameter (()). The third Stokes parameter (U) is similar to (Q)) except
that the power differences are taken with the linear polarizer set to +45° and -45° off
horizontal (or vertical). The linear polarizer and a phase retarder (quarterwave plate)
are then used to resolve the power into left and right hand circular components of
the light. The difference between the power in LHC and RHC polarized components
determines the fourth and final Stokes parameter (V).

The Stokes parameters as defined by the measurements can be related to the

components of the polarized wave as,

I = Ey}+FE,=E"+E>=E!+FE}
Q = -5}
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U = E:_E?
V = E2_E%, (A.35)

where E% is the power in the horizontal, E? is the power in the vertical, E% is the
power in the +45°, E? is the power in the —45°, E? is the power in the left hand
circular, and E% is the power in the right hand circular power component of the
polarized wave. Each Stokes parameter in (A.35), except I, is positive only when the
polarization base is the predominant wave component. Since the Stokes parameters
represent differences in power in two orthogonal polarizations, @), U, and V can be
positive, negative or zero. The first Stokes parameter I is always positive since it
represents total power. The first equation in (A.35) shows that the total power is
independent of the measurement basis.

The measurements are not all independent. For completely polarized light (or
other electromagnetic waves) the validity of the measurements can be verified from
the fact that:

I’=Q*+U*+V?. (A.36)

In general, though, there will be a portion of the wave that is not polarized. When
there is an unpolarized component the wave is said to be partially polarized and
Equation (A.36) is modified to

I’>Q*+U*+V?*, (A.37)

The equality holds only when the wave is completely polarized. The degree of polar-
ization (p) is defined as the ratio of the polarized power to the total power and can

be written as:

p:\/Q2+U2+V2

7 (A.38)

The degree of polarization lies between zero ( unpolarized) and unity (fully polarized).
Table A.1 shows examples of the Stokes parameters for various completely polarized
waves.

Sometimes it is desirable to work with the normalized Stokes parameters. The
normalized Stokes parameters are obtained by dividing each Stokes parameter by the
intensity of the polarized component (I, = pI).
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Polarization
(H) (V) (+) (-) (L) (R) (LEP) (REP)
| 2 2 2 2 2 2 3 3
o 2 2 0 0 0 0 1 2
g3 °
[e}
675§ U 0 0 2 -2 0 0 2 2
(a8
Vv 0 0 0 0 2 -2 2 1

Table A.1: Example Stokes parameters for various completely polarized waves

L@
I,
U
Sy = T

S3 = I—‘;. (A.39)

The notation for the normalized Stokes parameters in (A.39) differs from the notation
for the unnormalized Stokes parameters so it is obvious when the Stokes parameters
are normalized.

The originally posed Stokes parameters provided a systematic method of deter-
mining the polarization state of light. More importantly the Stokes parameters have

become a convenient way of characterizing the polarization state.

A.6 The Poincaré Sphere

Poincaré (1892) showed that the Stokes parameters could be interpreted geometri-
cally. The triplet (@,U, V) can be considered to represent the three cartesian coordi-
nates. For the case of a completely polarized wave the Stokes parameter I represents
the radius of a sphere, centered at the origin, that passes through the point (Q, U, V).
In the case of a partially polarized wave, the radius of the sphere that passes through
the point (Q, U, V) is pI. This sphere is commonly referred to as the Poincaré sphere.
The angle pairs (o, ¢) and (J, 7) were previously defined in terms of orthogonal wave
components of the rotating electric field vector of the polarization ellipse. In this
section, (a, ¢) and (J,7) are related to the Stokes parameters using Poincaré’s geo-
metrical interpretation of the Stokes parameters.
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Figure A.7: Definition the o and ¢ angles on the Poincaré sphere a) 2« in terms of
the H and V component values, b) 2« in terms of the Stokes parameters and ¢) ¢ in

terms of H and V components in the U-V plane.

A.6.1 Spherical (a,¢) Angles in terms of the Stokes Param-
eters
In this section we show how the spherical angles, («, ¢), on the Poincaré sphere is

related to the Stokes parameters. In the description of the polarization state based

on the polarization ellipse, we showed that,

Ey
t = —. A .40
an o E, ( )
Using the trigonometric identity
2tan o
tan200 = ————— A 41
anea =7 tan? o’ ( )
we find that
2By
tan2a = %
1= (%)
2F Eg

We recognize The denominator is the Stokes parameter () in Equation A.35. In Figure
A.7a, we have constructed a right triangle using (A.42). Using the Pythagorean
theorem we can find the hypotenuse of the triangle is E% + EZ which we recognize
as I from (A.36), I = /Q? + U? + V2. Figure A.7b shows 2« in terms of the Stokes
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parameters. From Figure A.7a and b, we see that 2Fy Eyg = v/U? + V2. The result
is the spherical angle, 2« in terms of Stokes parameters is given by,
VU2 + V2

tan 2o = —0 (A.43)

The angle 2« is the angle from the positive @ axis in the (@, U, V') coordinate system.

To determine how the spherical angle, ¢, is related to the Stokes parameters, we
let @ =0 and U = 0 in Equation A.35. When Q =U =0, Eg = Ey, E, = E_, and
I =V and the wave is left hand circularly polarized. From the linear polarization
ratio,

P=—e¢¥=¢, (A.44)
H

where we have used Ey = Fy. From Figure A.4, the linear polarization ratio, P = j,
for left hand circular polarization. Therefore, ¢ = m/2. We can find the relationship
between the Stokes parameters and the H and V components and the phase difference

between them,

I = E}+E}

Q = By -E}

U = 2EgEycos¢

V = 2EyEysing. (A.45)

And the spherical angles, |phi, is related to the Stokes parameters through the equa-
tion,

tan ¢ = g . (A.46)

¢ represents the angle in the U — V plane from the U axis (see Figure A.7c). 2« is
the polar angle from Q.

A.6.2 Spherical (§,7) Angles in terms of the Stokes Parame-

ters

In this section we show how the spherical angles, (4,7), on the Poincaré sphere is
related to the Stokes parameters. The angle § was previously defined in terms of the

polarization ellipse,
tand = — (A.47)
m
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Figure A.8: Definition the ¢ angle of the Poincaré sphere a) 26 in terms of the L and
R component values, b) 20 in terms of the Stokes parameters and c) 27 in terms of L

and R components in the Q-U plane.

where n and m are the lengths of the minor and major semi-axes of the polarization
ellipse. Using the trigonometric identity of (A.41),

2nm
We can determine the magnitude of the L and R components (E;, and Eg) of the

wave in terms of n and m,

S Ep — Eg
2

_ EutEr
N 2

mm = M
2
EF

m? —n* = LQR. (A.49)

We can find 26 in terms of F;, and Eg circular components of the polarized wave,

E? — E?

We recognize the numerator as the Stokes parameter, V' from Equation A.35. In
Figure A.8a, we construct a right triangle using (A.50). Using the Pythagorean
theorem we can find the hypotenuse of the triangle is EZ + E% which we recognize from
(A.36) as the Stokes parameter, I = /Q? + U% + V2. Figure A.8b shows 26 in terms
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of the Stokes parameters. From Figure A.8a and b, we see that 2E; Fr = /Q? + UZ.

The result is the spherical angle, 24, is related to the Stokes parameters as,

tan2 = ——L (A.51)

VI

The angle 26 is the angle from the @ — U plane in the (Q, U, V') coordinate system.
To determine how the spherical angle, 27 is related to the Stokes parameters, we
let U=0and V =01in (A.35). When U =V =0, Eg=FE, E, =FE_,and I = Q

and the wave is horizontally polarized. From the circular polarization ratio,

1—tand ior

=_ = A.52
q 1+tand ( )

Since the wave is horizontally polarized n = 0, tand = 0 and,
g = €T = cos 27 + jsin 27 . (A.53)

From Figure A.4 for horizontal linear polarization ¢ = 1 and therefore, 7 = 0. The

Stokes parameters are related to the L and R components and the angle 27,

I = E}+E;

Q = 2EpFEgcos2t

U = 2FEpFEgsin271

V = E? - F%. (A.54)

The spherical angle, 27 is related to the Stokes parameters through the equation

U
tan 27 = — . A.55
0 (A.55)

The spherical angle, 27, represents the angle in the @@ — U plane from the ) axis (see
figure A.8¢) and the spherical angle, 24, is the angle up or down from @) — U plane.

Figure A.9 is a three dimensional depiction of the two dimensional views in Figures
A.7 and A.8. This geometrical interpretation of the Stokes parameters yields another
way to depict polarization states. Any polarization state can be depicted as a point
on the Poincaré sphere. Any point on a sphere can be represented by two angles,
a polar angle and an azimuthal angle. There is an arbitrary choice of which of the
three axes (Q, U, or V) to chose as the polar axis. For two of the choices for the

polar axis, the (0,7) and («, ¢) descriptions of polarization state are obtained. A
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U b)

Figure A.9: Definition the angles of the Poincaré sphere a) (6,7) and b) (a, ¢) de-

scription.
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third choice for the polar axis yields a polarization description based upon the slant
linear polarizations as the basis.

The Poincaré sphere is a powerful tool for polarization analysis because of the ge-
ometrical nature of the description. It may be more correct when using the Poincaré
sphere description of polarization state to refer to the two descriptions of polarization
state as (2, ¢) and (26, 27) since the physical angles of the polarization ellipse de-
scription are doubled in the Poincaré sphere description. This doubling of the physical
angles of the polarization ellipse makes the cartesian space of the Stokes parameters
a sub-space.

From Figures A.9a and b we can determine the relationship between the (§,7)

and the (o, ¢) angles and the Stokes parameters using simple trigonometry,

s, = % = ¢0s 20 cos 27 = cos 2a
Sg = % = co0s 26 sin 27 = sin 2« cos ¢ (A.56)
s3 = % = sin 20 = sin 2a:sin ¢ .

From Equation (A.56) we can solve for 6 and 7 in terms of « and ¢,

sin2d = sin2asin ¢

tan27 = tan2acosd . (A.57)
Alternately, we can solve for a and ¢ in terms of § and 7.

cos2a = cos 20 cos 2T

tan¢g = tan2dcsc2T . (A.58)

These equations allow us to go back and forth between the two angular descriptions of
polarization state, without using bilinear fractional transformations. Using Equation
(A.56) we can determine the (0, 7) and («, ¢) angles in terms of the Stokes parameters.

U
tan2r = —
Q
%
tan2(5 = W
tang = K
U
T2 2
tan2a = ﬂ (A.59)

Q
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Figure A.10: Cross sectional view of the stereographic projection of the polarization
point (B) onto the complex circular polarization ratio plane. The plane of the view is
in the plane through point (B) and the V-axis. The plane of the projection is tangent
to the point V' = 1/2 and perpendicular to the V-axis.

A.7 Relationship Between the Poincaré Sphere and
W /W,

Mott (1986) shows that the polarization ratios (the polarization description in the
complex plane) are the stereographic projections of points on the Poincaré sphere
onto a plane tangent to the Poincaré sphere when the sphere is normalized to unity
diameter. Each type of polarization ratio is due to a stereographic projection from a
different reference point on the sphere onto a different tangent plane. When there is
partial polarization, we normalize the diameter of the total power sphere to unity.
An example of a stereographic projection shows that the magnitude of the %
parameter of McCormick and Hendry (1979) is the stereographic projection of Figure

A.10. Figure A.10 shows a cross sectional view of the stereographic projection. Point
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(B) on the Poincaré Sphere is the polarization state. The polarization base for the
projection is LHC polarization since when Wgx = 0 the point in the complex plane
is at the origin (AO + OF = 1, see Table 2.1). In the |W|/W; description due to
McCormick and Hendry, W5 corresponds to the co-polar power (which in this example
is LHC) (Chen, 1994).

A.8 Summary

This appendix covered the different descriptions of polarization state: polarization el-
lipse, polarization ratios, Stokes parameters, and the Poincaré sphere. It is important
to realize that all these descriptions of polarization state are equivalent for any given
polarization state except that the polarization ratios contain no information about
the degree of polarization. Each description is important because depending on the
circumstances one will yield the simplest mathematical and conceptual formulation.

A common thread running through all the polarization descriptions is the (4, 7)
and («, @) angular characterization. Figure A.11 is a convenient reference showing the
polarization angles (o, ¢) and (J,7) and their relationship to the Stokes parameters
for H-V and L-R receiver bases. The requirement that I? = Q*+U?+V? ensures that
the figures in A.11 can be folded into tetrahedrons with four right angles. A similar
tetrahedron can be constructed using the total power I. In this case, the angles
opposite the total power edge are no longer right angles. And, the 6 and « angles are
reduced from their actual values. Polarization tetrahedrons constructed using total
power are therefore not as useful the completely polarized polarization tetrahedrons
and are therefore not shown. The relationship between the polarization tetrahedron
and the Poincaré sphere is shown in Figure A.12. The polarization tetrahedron is an

original result of this work.



APPENDIX A. DESCRIPTIONS OF WAVE POLARIZATION 116

2ImW

8
A
c
[ ]

2w L] 2ReW
>
= L
Ly o ‘I
=
\
21 P
2a
a) 23
@
2
|
-
2
(P\ U N
LH 2Imw
2 s\ L
Ly © é ’\/\
\
b) 42-[ P
2d

Figure A.11: Relationship between the Stokes Parameters and the radar measurables

for: a) H-V and b) L-R receiver basis. The figures when folded form polarization
tetrahedrons.
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Figure A.12: Relationship between the polarization tetrahedron (see Figure A.11)
and the Poincaré sphere. The polarization state represented is (Q, U, V).



Appendix B

Conversion of Radar Parameters

Between Different Receiver Bases

One of the best features of this technique is the ability to convert from one receiver
basis to the any other. This makes the familiar radar parameters of various other
techniques available for inspection.

For example, a common radar parameter in a L-R receiver basis is the circular
depolarization ratio (CDR = W /Wg). It is possible to find the CDR in terms of
measurements in an H-V basis.

Equations for determining two of the more familiar parameters C DR and W /W,
in terms of an H-V receiver basis will be examined in this appendix.

In the case of an L-R receiver basis, one might wish to determine the parameters

in an H-V basis, pgy(0) and ZDR. These relationships are also derived here.

B.1 Circular Depolarization Ratio
The Circular Depolarization Ratio (CDR) is defined as
CDR= -~ (B.1)

depending on the transmitted polarization state. In this case, LHC is the assumed
transmitted polarization and therefore RHC is the co-polar return.

From Table 2.1 we see that in terms of Stokes parameters this can be written as

oon = (555)/(151)

2 2
I1+V
= —F. B.2
T (B.2)
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In terms of the (4, 7) description of polarization state we can also write this as

. 1+sin2d

DR= ———— . B.
CDR 1 —sin26 (B-3)
CDR is seen to depend only on ¢ and not 7.
In terms of an H-V receiver basis we can find CDR using table 2.1,
DR= ——— . B.4
CDR I— QImWHV ( )

In terms of H and V components, CDR depends only on the total power I and
the imaginary part of Wgy .

B.2 W/W,

In the W/W, description of McCormick and Hendry (1979), W is the (un-normalized)
receiver cross-correlation and Ws is the co-polar power. Again we will assume that
we are transmitting LHC so that the co-polar power is RHC.

From Table 2.1 and for a L-R receiver basis, we find,

W|=/Q2+U?/2, (B.5)

and since RHC is the co-polar return,
Wo=Wr=(1-V)/2. (B.6)

In terms of a linear H-V receiver basis we then can find that

V(Wi — Wy)? + (2ReWyy)?

|W‘/W2 - I— QImWHV

The phase of W/W, can be found as

_1 [ ImWLR
L RGWLR

= tan ! %1

_1 [ QRQWHV
Wy — Wy

Il
=+
o
=

OLR
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B.3 pupv(0) from a L-R Receiver Basis

The parameter pgy (0) that is usually measured in and H-V receiver basis can also
be found from L-R receiver basis data.

In terms of the Stokes parameters, |pgy(0)| is defined as
(Wav|
WuWy

U2 + V2
= J(HQ)(I—Q) ' (B9)

lpav(0)] =

From table 2.1 we can find pgy in terms of measurements in an L-R receiver basis,

0 _ (QIHIVVLR)2 + (WL - WR)2
‘IOHV( )‘ = \ [(WL + WR) + QRGWLR][((WL + WR) — QRGWLR]

(QIIHVVLR)2 —+ (WL - WR)2

= . B.10
\ (WL + WR)2 — (QRGWLR)2 ( )

The phase angle of pgy (0) is defined through the Stokes parameters as

V
=tan"! [—] : B.11
6= tan™ [ (B.11)
In terms of L-R receiver basis measurements,
L [Wr—Wgr

LI 2
QS an ZIIHWLR ( )

The phase of the pgy (0) is due to ¢4, and d,. This equation is the same as derived
by Holt (1988) who derived his result from integrals over the drop size distribution
and assumed that §,= 0.

B.4 ZDR from a L-R Receiver Basis

The Differential Reflectivity (ZDR) is defined in a linear H-V basis as,

ZDR = [%
14
I+Q
—qQ| -

(B.13)
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In terms of L-R receiver basis data

ZDR _ (WL + WR) + QRQWLR
(WL + WR) — QRGWLR )

(B.14)

Here, we have neglected the propagation effects to and from the scattering volume.
And, we are again assuming that the transmitted polarization is RHC.

The results from Holt (1988) are essentially the same except for sign changes since
he is assuming that RHC was transmitted. His result shows a correction to ZDR due

to propagation effects (at S-Band).



Appendix C

System Calibration Technique

C.1 Introduction

The calibration of a dual-polarized radar system is important because of the possi-
bility of gain and phase differences in the two receiver chains. It is easy to see that
gain differences in the receiver chain will bias the measured « angles towards the H
or V polarization with the higher gain (just like ZDR). On the other hand, phase
differences in the receiver chains will bias the measured ¢ values.

Other sources of data contamination are possible from small differences in the
linearity of the log-amplifiers and differences in the limiting of the constant-phase
limiters.

Errors resulting from differences in the log-amp and constant-phase limiters can-
not be corrected unless the role of the receivers is swapped from pulse to pulse.
(Sachidananda and Zrnié, 1985, Figure 16b) shows just such a technique that is also
self correcting for gain and phase differences (the gain and phase differences average
to zero). It is highly recommended that the New Mexico Tech dual-polarization radar

be modified to utilize this technique in the future to improve data quality.

C.2 Poincaré Sphere as a Calibration Aid

A standard pyramidal gain horn was mounted to a rotary joint that was mounted to a
tripod. The horn was equipped with two bubble balances for accurate determination
of horizontal and vertical alignment of the horn. The rotary joint had an attached
protractor for determining the angle position.

The radar was then operated in a passive mode (no transmitted power). The
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horn was driven with an RF test generator. The sync pulse of the radar was used
synchronize the test generator. Delay after the sync pulse was dialed in to obtain a
mid range response in the radar real-time display.

The radar was configured to receive in an H-V basis. The test horn was about 30
meters from the radar antenna and pointed directly at the antenna. The test horn
was positioned to transmit approximately slant 45 polarization and the power of the
test generator was adjusted so that the power in the two receivers was well above
the receiver noise and approximately equal in the two channels. The power levels of
the two channels as indicated on the radar’s analog scope was used to position the
radar antenna so that the test signal was received in the center of the main lobe of
the antenna. Finally, the frequency of the test generator was adjusted to peak the

power in the receivers.

C.3 Radar Phase Calibration

As long as the transmitted polarization from the test horn is not near H or V polar-
izations, the phase difference of the H and V component are well determined as the
phase of the cross correlation of the signals in the H and V receiver channels. And, at
slant 45 polarizations that phase difference should be zero. At slant -45 polarization
the phase difference should be +7. Phase offset values in the host computer software

were then adjusted to correct for the receiver channel phase differences.

¢ = du—dv+e
¢ = d+e
d) = QB—G,

where ¢ is the measured phase value and € is the difference in the phase length of the
two receiver paths. € was found to be 53 degrees.
The frequency of the signal generator was re-peaked several times to make ensure

that the phase calibration was repeatable.

C.4 Radar Gain Calibration

At this point it is important to clarify the way the angles are defined since there
are many possible ways that this may be done. For example, Guissard (1994) refers
to two such possible conventions as the forward scattering alignment (FSA) or the
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back scattering alignment (BSA). Torlaschi and Holt (1998) have chosen to define Left
Handed and Right Handed rotation when viewed from the radar regardless of whether
the wave is propagating towards or away from the radar. In the field of optics, LHC
and RHC are defined in terms of the beam of light propagating toward the viewer.
While traditionally, radar meteorologists have defined LHC and RHC in terms of
looking in the direction of propagation (opposite of the optics convention)(Bringi
and Hendry, 1990).

This is a very subtle point but one that can change the interpretation of the data
if care is not taken. Because of the way we have defined the axes of the Poincaré
sphere, we will chose a FSA convention, that is looking from the radar. The angle,
7 =0, is defined as H polarization. And a positive 7 is measured in a CCW direction
from the horizontal when view from the radar. Of course from the test horn the
convention would then be BSA and the angles would be measured in a CW direction.

Figure A.9 is repeated here for reference. i The orientation angle of the polariza-
tion ellipse is 7. The orientation angle of the polarization ellipse rotates as the test
horn is rotated. Comparing Figures A.9a and b, we can see that if the transmitted
polarization state of the test horn is linear, the polarization state on the Poincaré
sphere must be in the Q-U plane (6 = 0). The angle ¢ can only take on values of zero
and +7 for any polarization in the Q-U plane.

The phi angle should change abruptly when 27 passes through zero and 7 (see
Figure C.1). In fact, for 6 = 0 and 7 = 0 or +x the ¢ angle is not even defined. For-
tunately, there was a small V component even when the horn was aligned horizontally
(or a small amount of circular polarization). As the horn was rotated through zero
degrees for example, the phase changed rapidly from zero to w. These rapid phase
changes were used along with the protractor readings off the rotary joint to determine
the precise setting of the horn to produce H and V polarizations. The settings of the
slant polarizations then occur half way between the two protractor readings.

The test horn was then aligned to +45 slant linear polarization. Slant +45 cor-
responds to equal power in the H and V polarizations. The gain difference between
the two receiver channels was then adjusted to zero. The test was repeated for -45
slant linear and the gain difference was again adjusted to zero. The entire test was
also repeated to check for consistency.

Note that when there are small differences for the gain offset values for the two
slant polarizations, the value halfway between the two should be used as the actual

calibration value.
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The actual offset in gain for +45 slant linear polarization was a count of one
in the realtime display program which corresponds to about 0.25 dB. For -45 slant
linear polarization the correction was a count of zero. The correction of the gain
differences involves integer arithmetic in the host program. A correction value for the

gain differences of the two receiver chains was chosen to be zero.

¢

CH +45 v -45 H
2ty 21, 3

Figure C.1: The ¢ angle changes abruptly as the antenna rotation angle, 27 passes
through zero and 7 radians. The jump would be discontinuous if there were no
residual circularly polarized component in the transmitted polarization state.
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